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Abstract 

Background Aging affects the incidence of diseases such as cancer and dementia, so the development of biomark-
ers for aging is an important research topic in medical science. While such biomarkers have been mainly identified 
based on the assumption of a linear relationship between phenotypic parameters, including molecular markers, and 
chronological age, numerous nonlinear changes between markers and aging have been identified. However, the 
overall landscape of the patterns in nonlinear changes that exist in aging is unknown.

Result We propose a novel computational method, Data-driven Identification and Classification of Nonlinear Aging 
Patterns (DICNAP), that is based on functional data analysis to identify biomarkers for aging and potential patterns of 
change during aging in a data-driven manner. We applied the proposed method to large-scale, public DNA methyla-
tion data to explore the potential patterns of age-related changes in methylation intensity. The results showed that 
not only linear, but also nonlinear changes in DNA methylation patterns exist. A monotonous demethylation pattern 
during aging, with its rate decreasing at around age 60, was identified as the candidate stable nonlinear pattern. We 
also analyzed the age-related changes in methylation variability. The results showed that the variability of methylation 
intensity tends to increase with age at age-associated sites. The representative variability pattern is a monotonically 
increasing pattern that accelerates after middle age.

Conclusion DICNAP was able to identify the potential patterns of the changes in the landscape of DNA methylation 
during aging. It contributes to an improvement in our theoretical understanding of the aging process.
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Background
Aging affects the incidence of diseases such as can-
cer and dementia and is an important medical science 
research topic. The identification of biomarkers capable 

of measuring the degree of aging is a central theme in 
aging research. For example, the length of telomeres and 
the expression levels of the p16 gene are known to be 
correlated with chronological age and are representative 
biomarkers for aging [1, 2]. In recent years, considerable 
research has been conducted on identifying biomarkers 
using genomics data [3].

While changes in biomarkers for aging typically exhibit 
a linear relationship with chronological age, numerous 
nonlinear patterns in biomarker changes during aging 
have been reported. For example, the risk of age-related 
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diseases does not increase proportionally with age, 
but rather, risk accelerates after middle age [4]. Human 
phenotype and disease risk also show different patterns 
of age-related changes [5], and nonlinear age-related 
changes in RNA and protein expression have also been 
reported [6–9]. For some DNA methylation sites, non-
linear changes in methylation intensity during aging fol-
lowing a power law have been reported [10]. While the 
patterns of aging are thought to reflect the underlying 
biological mechanisms, the overall landscape of nonlin-
ear changes during aging is unknown.

Treating changes in the patterns of aging as a function 
of age allows for their mathematical analysis. Functional 
data analysis is a powerful statistical approach that can be 
applied to the analysis of the effect of age in a data-driven 
manner. Given that the functions are considered to be 
vectors with an infinite number of dimensions, numer-
ous multivariate analysis methods have been extended to 
functional data. For example, functional principal com-
ponent analysis can be used for dimension reduction 
of a functional dataset, and identification of principal 
patterns [11]. By developing a functional data analysis-
based approach for large-scale genomics data, we can 
observe the overall landscape of age-related changes in 
biomarkers.

In this study, we propose a novel computational 
method based on nonlinear association analysis and 
functional data analysis to identify nonlinear biomark-
ers for aging and to clarify potential patterns of change 
during aging in a data-driven manner. We apply this 
approach to large-scale genome-wide DNA methyla-
tion data. Previous large-scale methylome analyses have 
revealed that some DNA methylation sites are hyper- 
or hypo- methylated during aging [12, 13]. In addition, 
DNA methylome information can be used as a powerful 
omics tool for developing biomarkers for aging at the epi-
genomic level. We show that age-related changes in the 
genome-wide DNA methylome typically have a linear 
pattern, but that nonlinear patterns are also present. We 
identified representative aging patterns of DNA methyla-
tion intensity and their variability. The findings presented 
here provide important insights into the link between 
DNA methylation and aging. Furthermore, the method 
developed in this study can be used to elucidate the land-
scape of patterns in aging-related changes and contribute 
to an improved theoretical understanding of the aging 
process.

Results
Novel computational workflow
To identify patterns of age-related change in a data-
driven manner, we developed a novel computational 
approach which we refer to here as Data-driven 

Identification and Classification of Nonlinear Aging 
Patterns (DICNAP). Figure 1 shows a graphical abstract 
depicting our methodology. In addition to age informa-
tion for the subjects, input data consist of the methy-
lome dataset, which is a matrix with subjects by DNA 
methylation site, with the elements of the matrix rep-
resenting methylation intensities. Briefly, the workflow 
consists of the following steps.

The first step involves performing a nonlinear correla-
tion analysis to identify which of the methylation sites 
in the genome-wide DNA methylation site are associ-
ated with age. We used the maximal information coeffi-
cient (MIC), which is a nonlinear correlation index that 
ranges from zero to one, to capture any type of associa-
tion between two variables [14]. We calculated the MIC 
between age and methylation intensity for each site, as 
well as the associated P value using permutation tests. 
Sites with Benjamini–Hochberg adjusted P values < 0.05 
were considered to be age-associated sites for the down-
stream analysis [15]. All other sites were considered to be 
non-correlated sites (NC).

The second step is to classify the identified age-asso-
ciated sites into linear and nonlinear patterns. MIC - ρ2 
can be used as an index of nonlinearity, where ρ is the 
Pearson correlation coefficient [14]. A larger MIC - ρ2 
represents higher nonlinearity. We consider sites with a 
nonlinear index < 0.05 to be sites with a linear pattern. 
Among these linear sites, those with Pearson correlation 
coefficients ≥ 0 were considered to be linearly increasing 
(LI), and sites with Pearson correlation coefficients < 0 
were considered to be linearly decreasing (LD). All other 
age-associated sites were defined as having a nonlinear 
(NL) pattern.

The third step is a nonparametric function estima-
tion for the nonlinear age-associated methylation sites. 
To focus on the difference in the shape of the functions, 
we applied standard normalization of the methylation 
intensity for each site. We estimated the function for age-
related changes by nonparametric regression with spline 
smoothing. As a result, the functional data for each site 
were generated as a scaled intensity on a grid separated 
by one year of age.

The fourth step is a functional principal component 
analysis (FPCA), which is used to embed the nonlinear 
age-associated methylation sites into a low-dimensional 
space based on the function patterns. FPCA takes a set 
of functional data as an input and gives principal com-
ponent (PC) scores for each function. The eigenfunction 
shows the principal pattern that each PC represents. In 
this step, FPCA is applied to the age-related functions 
after the previous step and embeds the sites into a PC 
coordinate space. The PCs with a contribution rate > 1% 
were adopted as the top PCs for downstream analysis.
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The final step comprises a multivariate analysis using 
PC coordinates for NL sites. Once the methylation 
sites are embedded into the PC coordinate space, ordi-
nary multivariate analysis can be applied. Clustering 
of the PC coordinates allows for data-driven classifica-
tion of DNA methylation sites with nonlinear patterns. 
We used K-means clustering and classified nonlinear 
sites into groups. These groups were named NL1, NL2...
NLK, where K is the number of clusters automatically 
detected. For each of the K clusters, the median of the PC 
coordinate values was set to the center, and the typical 

pattern for each cluster was reproduced based on the 
PC coordinate values of the center, mean function and 
eigenfunctions.

Finally, our workflow classifies all methylation sites 
into NC, LI, LD, NL1, NL2...NLK, and the representa-
tive function pattern for NL sites. The details of the clas-
sification method are described in the Methods section. 
We applied the proposed method to a simulation data-
set and describe the results of the simulation data analy-
sis in Additional File 1: Section 1. Briefly, the simulation 
study showed that DICNAP can appropriately identify 

Fig. 1 The outline of DICNAP method. Input data are a methylome dataset consisting of a matrix with subjects by DNA methylation site, and 
the elements of the matrix represent methylation intensities. Age information for the subjects is also required. After the multistep procedure, all 
methylation sites are classified as NC, LI, LD, NL1, NL2...NLK
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potential functional patterns and classify sites from an 
aging methylome dataset. However, a limitation of the 
method is that nonlinear changes that begin in very old 
age are difficult to detect.

Genome‑wide landscape of linear and nonlinear patterns 
for age‑related change
We obtained a large-scale DNA methylome dataset of 
human blood from two previous aging studies from 
the NCBI Gene Expression Omnibus (GEO) database 
(GSE87571 and GSE40279) [12, 13]. The male and female 
datasets were analyzed separately because previous 
studies have reported that age-related changes in DNA 
methylation differ between men and women [16]. To 
eliminate SNPs and other effects, multimodal sites were 
excluded from the downstream analysis. Finally, from the 
GSE87571 dataset, the methylation intensity beta values 
for 479,461 sites from 388 female subjects between the 
ages of 14 and 94 were used to compile Dataset1F, and 
those for 479,634 sites from 341 male subjects between 
the ages of 15 and 87 were used to compile Dataset1M 

for downstream analysis. Similarly, from the GSE40279 
dataset, the methylation intensity beta values for 454,171 
sites from 338 female subjects between the ages of 21 
and 101 were used to compile Dataset2F, and those for 
454,852 sites from 318 male subjects between the ages of 
19 and 96 were used to compile Dataset2M. Details of the 
dataset preprocessing steps are described in the Methods 
section. Among these four datasets, we used Dataset1F as 
the main dataset in our analysis, because it has the largest 
sample size (n=388). We used the three other datasets to 
evaluate the stability of the analysis. We applied DICNAP 
to all four datasets; the results for the main dataset (Data-
set1F) are described in Fig.  2, and those for the other 
three datasets are described in Additional File 2.

Figure  2a shows a plot of the MICs and Pearson cor-
relation coefficients. Sites with a high MIC tended to be 
plotted with a bias toward regions with high Pearson’s 
correlation coefficient, which suggests that the changes 
in the DNA methylation intensity during aging were 
dominated by monotonous changes. This finding, which 
is consistent with the high performance of previously 
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Fig. 2 Analysis of methylation intensity function by age in Dataset1F. a Plots of MIC (X-axis) and Pearson’s correlation coefficient (Y-axis). Each dot 
represents a methylation site. b QQ plot of nonlinearity index. The nonlinearity index was defined as MIC − ρ2 . The null distribution was generated 
by label permutation. The red line represents y = x. c Pie chart showing the genome-wide methylation sites for age-related association types: 
NC (non-correlated), LI (linear increase), LD (linear decrease), NL (nonlinear) . d Contribution rate for PC1–PC5. e PC1 and PC2 for 1000 randomly 
selected sites. The colors represent groups detected by clustering. f Representative functions for the identified NL groups (X-axis: age, Y-axis: scaled 
intensity)
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reported biomarkers for aging based on linear relation-
ships, was also found for the three other datasets.

Figure  2b shows a Quantile–Quantile plot (QQ plot) 
of the nonlinear index defined by MIC − ρ2 . A null dis-
tribution was generated by subject label permutation. 
In this QQ plot, both inflation and deflation of the non-
linear index are observed. The inflation of the QQ plot 
shows that there are some methylation sites with non-
linear associations. The deflation of the QQ plot shows 
the existence of methylation sites with stronger linearity. 
These trends were also commonly observed in the other 
three datasets (Additional File 2), suggesting that some 
methylation sites have nonlinear monotonous intensity 
changes in addition to the linear changes. The break-
down of association types (NC, LI, LD, NL) in Dataset1F 
is shown in Fig.  2c. The percentage of age-associated 
sites (LI, LD, NL) was 27.7%, while those of Dataset1M, 
Dataset2F, and Dataset2M were 31.8%, 11.1%, and 4.1%, 
respectively. Although the same workflow and thresholds 
were applied to all of the datasets, differences in statisti-
cal power were observed across datasets.

To investigate biological phenomena associated with 
methylation sites that showed a linear response to age, 
we subjected LI and LD sites to Gene Ontology (GO) 
analysis. Additional File 3 shows all of the significant GO 
terms (false discovery rate (FDR) < 0.05). A total of 204 
GO terms are significantly represented in the LI group, 
with the top five GO terms being “central nervous system 
neuron differentiation,” “cell fate commitment,” “DNA-
binding transcription activator activity, RNA polymerase 
II-specific,” “pattern specification process,” and “synap-
tic membrane.” These GO terms were also significantly 
enriched in Dataset1M . In Dataset2F and Dataset2M, no 
GO terms were significantly enriched in the LI groups. In 
the LD group, no GO terms showed significant enrich-
ment in any of the four datasets . The results for the other 
three datasets are shown in Additional File 4.

Figure 2d shows a bar plot of the contribution rate for 
PC1-PC5 in the main dataset. Most of the differences in 
function are explained by PC1 and PC2. Additional File 
5 shows the mean function and eigenfunction for the 
FPCA for all four datasets. Except for the sign difference, 
their shapes are similar, although the mean function and 
ψ1(Age) behave differently, mainly at the edges. Figure 2e 
shows the results for the PC coordinate values with the 
identified group labels in the main dataset; four groups 
(NL1, NL2, NL3, and NL4) were identified as having 
nonlinear patterns. Indeed, in all datasets, the number 
of groups with nonlinear-type sites was four. Figure  2f 
shows the representative functions for the NL groups. 
While the representative functions were somewhat 
unstable among the four datasets, age-related hypometh-
ylation patterns that moderated after around age 60 (NL1 

and NL4 in Dataset1F) appeared as nonlinear patterns in 
all of the datasets (NL1 and NL3 in Dataset1M, NL2 in 
Dataset2F, and NL1 in Dataset2M).

We investigated the stability of the classification of NL 
sites by calculating the absolute Pearson correlation coef-
ficients for the PC1, PC2, and PC3 values for the methyl-
ation sites classified as NL in all four datasets (Additional 
File 6). PC1 is more strongly correlated in the four data-
sets (Pearson’s correlation coefficient 0.94 - 0.98) than 
PC2 and PC3. Since the clustering of the NL group is 
explained mainly by PC1 (Fig. 2e), the classification of the 
methylation sites for NL patterns is considered to be sta-
ble across datasets.

We applied GO analysis to nonlinear site groups (NL1, 
NL2, NL3, and NL4). From the representative functions, 
NL1 and NL4 have nonlinearly decreasing patterns. 
In the NL1 group, the top five GO terms were “pas-
sive transmembrane transporter activity,” “regulation of 
membrane potential,” “extracellular matrix,” “transporter 
complex,” and “regulation of trans-synaptic signaling.” 
In the NL4 group, the top five GO terms were “regula-
tion of cell morphogenesis,” “regulation of ion transmem-
brane transport,” “cell-cell junction,” “extracellular matrix 
structural constituent,” and “transmembrane receptor 
protein kinase activity.” All of these top GO terms were 
significantly enriched in one of the nonlinear decreas-
ing patterns (NL1 or NL3) in Dataset1M. In contrast, in 
Dataset2F, only a total of five GO terms were significant 
for the nonlinear decreasing groups (either N1 or NL2) 
and contained no top GO terms in the main dataset. In 
Dataset2M, no GO terms were significant for the nonlin-
ear decreasing groups (either N1 or NL2). The full results 
of the GO analysis using the main and other datasets 
are presented in Additional File 3 and Additional File 4, 
respectively.

In the main dataset, NL2 and NL3 are characterized by 
having nonlinearly increasing patterns. In NL2, the top 
five GO terms are “central nervous system neuron dif-
ferentiation”, “cell fate commitment”, “appendage devel-
opment”, “morphogenesis of a branching structure”, and 
“regulation of animal organ morphogenesis”. In NL3, the 
top five GO terms are “embryonic organ development,” 
“pattern specification process,” “cell fate commitment,” 
“synapse organization,” and “mesenchyme development.” 
These top GO terms were all also included in NL1 or NL3 
of Dataset1M and are characterized by having increas-
ing patterns. GO terms other than presynapse were also 
included in NL3 of Dataset2F and NL4 of Dataset2M, 
which are groups characterized by a nonlinear increasing 
pattern in each analysis.

We checked which groups contained known DNA 
methylation sites as biomarkers for aging in previ-
ous studies. For example, cg16867657 (annotated 
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to ELOVL2), cg06639320 (annotated to FHL2), and 
cg16419235 (annotated to PENK) are known biomarkers 
for aging [17]. These sites showed positive linear correla-
tions with age in the original study. In our analysis, these 
three sites were classified as LI in all four datasets.

In another study, cg02228185 (annotated to ASPA), 
cg25809905 (annotated to ITGA2B), and cg17861230 
(annotated to PDE4C) were all shown to predict age 
by a linear model [18]. cg02228185 is grouped in LD in 
Dataset1F, Dataset1M, and Dataset2F. In Dataset2F, it is 
classified as NL1, which is a nonlinearly decreasing pat-
tern. cg17861230 is grouped in LI in Dataset1F and Data-
set1M, while it is grouped as NC in Dataset2F and NL4 in 
Dataset2M. cg25809905 is grouped in NL4 in Dataset1F; 
while it is LD in Dataset1M, NL1 in Dataset2F and NL1 
in Dataset2M. In all three sites, the direction of increase 
and decrease is consistent with the original study. How-
ever, these sites did not always show linear associations, 
and in some cases, a nonlinear association was suggested.

We investigated which group the sites consisting Hor-
vath’s epigenetic clock have been classified. Genome-
wide DNA methylation-based biomarkers of aging are 
called epigenetic clocks. It has been demonstrated that 
the predicted age obtained using a linear model of the 
genome-wide methylation markers can predict chrono-
logical age [19]. In particular, Horvath’s epigenetic clock 
is a linear predictive equation consisting of 353 CpG sites 
and works with methylome data from a variety of human 
organs, suggesting a universal mechanism for why we 
age that transcends organ differences [20]. We therefore 
checked the associations among our identified groups 
and Horvath clock sites.

Figure 3 shows a breakdown of association types (NC, 
LI, LD and NL) in the Horvath clock sites in Dataset1F. 
The percentage of age-associated sites among the Hor-
vath clock sites was higher than that in the genome-wide 
methylation sites. While Horvath clock sites included 
a higher percentage of age-associated sites, they also 
included a meaningful percentage of NC and NL as well 
as LI and LD. This suggests that methylation sites in the 
Horvath clock include nonlinear changes and sites with 
only small or no stand-alone associations. The results for 
the other three datasets support this (Additional File 7).

Applying the workflow to variability functions
Given that aging causes loss of control over biomolecu-
lar expression, the variability in biomarker expression 
should change during aging. When the variability in the 
DNA methylation intensity changes during aging, the 
residuals of the fitted regression function are expected 
to reflect this change. Previous studies have shown age-
related increases in the variability of DNA methylation 
[10, 21–23]; however, it is not clear how this variability 

changes with age. We, therefore, applied the DICNAP 
to analyze the pattern of variability functions for meth-
ylation intensity.

The DICNAP-based variability function analysis was 
applied as follows. The analysis was performed for age-
associated sites (LI, LD, and NL). We applied nonpara-
metric regression for all age-associated sites, computed 
the squares of the residuals, and created a squared 
residual matrix (Fig.  4a). The model for nonparamet-
ric regression is the same as with the intensity func-
tion analysis. We applied the DICNAP method to this 
matrix and classified the age-associated sites as varNC, 
varLI, varNL1, varNL2...varNLK in terms of variabil-
ity. We conducted a simulation analysis and found that 
this approach effectively identified and classified the 
variability functions (Additional File 1: Section  2). In 
addition, the results also showed that linear variability 
changes tend to be identified as nonlinear, but these 
representative patterns can be identified as linear in 
downstream FPCA analyses.

Figure 4 shows the results of the variability function 
analysis for age-related sites in Dataset1F. Figure  4b 
shows a plot of the MICs and Pearson correlation coef-
ficients. The plots are asymmetric and tend to have 
more sites with a positive correlation between variabil-
ity and age. Figure 4c shows a QQ plot of the nonlinear 
index, suggesting the existence of nonlinear variability 
changes. This pattern was also identified in the other 
three datasets (Additional File 8).

After the classification of association types, no varLI 
and varLD sites were detected, and 15.6% of age-asso-
ciated sites in Dataset1F had varNL characteristics 
(Fig.  4d). In Dataset1M, Dataset2F, and Dataset2M, 
11.3%, 10.9%, and 15.4% of age-associated sites showed 
age-related variability changes, respectively. These find-
ings suggested that about 10 ∼ 15% of age-associated 
sites stably show age-associated variability changes.

All Horvath
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NL

LI
LD

NC

NL

LI

LD

Fig. 3 Pie charts for age-related correlation patterns of Horvath clock 
sites in Dataset1F. The left panel is a pie chart of all sites and is the 
same as in Fig. 2c. The right panel is a pie chart of the sites included 
in the Horvath clock. NC: non-correlated, LI: linear increase, LD: linear 
decrease, NL: nonlinear
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Subsequent FPCA analysis identified patterns of vari-
ability function in the methylome dataset. The shape of 
the mean function and eigenfunction was similar among 

all four datasets (Additional File 9). Figure  4e shows a 
bar plot of the contribution rate of principal coordinates 
in the main dataset. Figure  4f shows the results for PC 
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Fig. 4 Analysis of variability function for age in Dataset1F. a Outline of the variability analysis using DICNAP. b Plots of MIC (X-axis) and Pearson’s 
correlation coefficient (Y-axis). Each dot represents a methylation site. c QQ plot of nonlinearity index, which is defined as MIC − ρ2 . The null 
distribution was generated by label permutations. The red line represents y = x. d Pie charts for the genome-wide methylation sites of age-related 
correlation patterns: NC (non-correlated), LI (linear increase), LD (linear decrease), NL (nonlinear). e Contribution rate for PC1–PC5. f PC1 and PC2 in 
the FPCA analysis for 1000 randomly picked NL sites. The colors represent the groups detected by clustering. g Representative age-related functions 
for nonlinear sites (X-axis: age, Y-axis: scaled variability)
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coordinate values with clusters identified in the main 
dataset. Three groups (varNL1, varNL2, and varNL3) 
were identified as having a nonlinear variability pattern. 
Figure  4g shows the representative functions for the 
NL groups. As representatives, we identified patterns 
(varNL1 and varNL3) in which the variability increases 
monotonically and accelerates after middle age. This pat-
tern was also identified in the other three datasets.

Discussion
Insights for aging biology
We developed a novel data-driven computational 
approach named DICNAP and applied it to four large-
scale methylome datasets from two different studies. This 
method focuses on nonlinear changes in addition to lin-
ear changes, and we investigated the potential nonlinear 
patterns. One advantage of data-driven analysis is the 
ability to discover new biological knowledge from large 
datasets without using previous biological knowledge. 
Data-driven computational approaches also have been 
employed in genomics studies for analyzing a variety of 
datasets and tasks, and they have provided novel biologi-
cal insights [24–26]. Our results provide the following 
new insights into the characteristics of DNA methylation 
and its effect on aging.

In this study, we found that age-related DNA methyla-
tion intensity is characterized by nonlinear monotonic 
demethylation, which slows down after around age 60. 
This trend is a stably observed pattern that was replicated 
among datasets. Errors in cytosine methylation during 
DNA replication are a passive cause of age-related DNA 
demethylation [27]. In addition, human cell division rates 
decrease with age [28]. The cause of this pattern may be 
that DNA demethylation is slowed by a decrease in the 
frequency of cell division with aging.

The results of our GO analysis clarified the biological 
processes associated with different aging patterns. In 
the nonlinear decreasing pattern, GO terms related to 
membrane transport were detected at the top of the list. 
In the linear or nonlinear increasing patterns, GO terms 
related to neurological or developmental processes were 
detected at the top of the list. However, no clear differ-
ences were found among each of the identified groups. 
These results suggest that nonlinear effects may be too 
weak to be linked to specific biological processes.

Our results suggest that the Horvath epigenetic clock 
is related to a mixture of sites with different association 
types. It has been reported that epigenetic clock sites are 
sensitive to the dataset being analyzed, and it is difficult 
to assess their functional relationship to the aging pro-
cess [29]. It is possible that epigenetic clock sites include 
the methylation sites of nonlinear association types with 

small effects, which makes the interpretation of epige-
netic clocks more difficult.

Nonlinear aging changes in the variability function 
were identified in approximately 10% of the sites whose 
methylation intensity changed with age. The identified 
stable pattern is a function of the variability that mono-
tonically increases and accelerates after middle age. 
These sites suggest that the monotonically progressing 
breakdown of the control of the life system accelerates 
at middle age. Although active and passive processes are 
known to drive age-related changes in DNA methylation, 
this pattern may reflect the mechanisms that drive age-
related changes.

Limitations and future perspectives
One limitation of this study is related to the stability of 
the analysis due to the nonparametric approach. For 
example, the functional form of the edge region was 
unstable, and the detection power of age-associated 
sites differed across datasets. After carefully address-
ing these problems, we showed that some findings are 
highly stable. Although the biological insights that could 
be obtained from the data were limited, our results clari-
fied the landscape of different patterns in aging-related 
changes and contribute to an improved theoretical 
understanding of the aging process.

Another limitation of this study is that cross-sectional 
data are used rather than longitudinal data. The func-
tional patterns estimated in this study can be assumed 
to occur over the lifetime of an individual. On the other 
hand, since there are individual differences in the rate of 
aging, the use of cross-sectional data may be one reason 
why the results of this study are not so stable. Although it 
is difficult to obtain longitudinal methylome data span-
ning human ages from young to old, it would be mean-
ingful to apply DICNAP to longitudinal omics data.

Interpreting the results of this study in terms of cel-
lular subsets is an important issue for future study. The 
changes in bulk methylation levels are expressed as a 
mixed effect of changes in the proportion of cell sub-
sets and cell subset-specific methylation changes [30]. A 
deconvolution approach using cellular subsets and based 
on methylome data would be effective for obtaining 
information on cell subset composition [31, 32]. In addi-
tion, recent studies have been employed cytometry and 
scRNA-seq approaches on a large scale; such findings 
allow us to directly obtain information on cellular hetero-
geneity [33–35]. Understanding of the biological mecha-
nisms underlying the methylation biomarkers associated 
with aging would be greatly enhanced if the details of cell 
subset proportions and subset-specific nonlinear aging 
changes were known.
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In recent years, attention has focused on the combined 
analysis of data from multiple omics layers, such as the 
epigenome, transcriptome, proteome, metabolome, and 
somatic genome [36]. DICNAP can be applied to a vari-
ety of aging omics data that are not limited to the methy-
lome. An approach based on aging patterns across omics 
layers, including phenomics, is expected to provide a new 
direction for the construction of aging theory.

Conclusion
In this study, we developed a novel computational 
method, called DICNAP, to identify biomarkers associ-
ated with aging and to clarify the potential patterns of 
changes that emerge during aging in a data-driven man-
ner. By applying DICNAP to DNA methylome data, we 
clarified the landscape of associations between DNA 
methylation and aging and identified the representa-
tive pattern of age-related changes in methylation inten-
sity and variability. DICNAP can be used to elucidate 
the landscape of different aging-related changes and to 
contribute to a theoretical understanding of the aging 
process.

Methods
DNA methylome dataset
We obtained the large-scale DNA methylome data-
sets from Illumina HumanMethylation450 Bead-
Chips in previous aging studies from the NCBI GEO 
database(GSE87571 [12] and GSE40279 [13]). We 
renamed GSE87571 and GSE40279 as Dataset1 and 
Dataset2, respectively. These datasets were selected 
using the following procedure. First, we searched for 
“(GPL13534 [GEO Accession Number] ) AND aging” in 
the NCBI GEO database, sorted the output by sample 
size, and used the top two datasets as Dataset1 and Data-
set2, respectively.

Dataset1 was obtained from the Northern Sweden Pop-
ulation Health Study, a health survey of the population, 
and includes data for residents aged 15 and older. We 
obtained the raw IDAT files from NCBI GEO. We applied 
SWAN normalization using the SWAN function and cal-
culated the beta values as the methylation intensity from 
the IDAT files using the minfi package for R [37]. Using 
the diptest package for R, we tested for multimodality of 
the methylation intensity at each site [38]. Sites with mul-
timodality (P value < 0.1) were removed from subsequent 
analyses. Three subjects whose age information was 
missing were also excluded from the analysis. We divided 
the dataset into male and female subjects, and these data-
sets were used for subsequent analyses.

Dataset2 was derived from two different cohorts, con-
sisting of 426 Caucasian and 230 Hispanic individuals. 
We started the analysis from the preprocessed dataset 

downloaded from NCBI GEO. This dataset included only 
autosomal markers. The CpGs with a detection P value 
greater than 0.01 were considered missing; as a result, 
830 markers with values greater than 5% were excluded in 
advance. This preprocessed dataset therefore contained a 
total of 473,034 markers. Sites exhibiting multimodality 
(i.e., P-value < 0.1) were removed from subsequent analy-
ses. We divided the resulting data into male and female 
subjects, and these datasets were used for subsequent 
analyses.

DICNAP method
In this section, we describe the technical aspects of our 
workflow. The first step involved a nonlinear correlation 
analysis to identify the methylation sites associated with 
age in a linear or nonlinear pattern from the genome-
wide DNA methylation sites. We then calculated the 
MIC and R-squared between age and the methylation 
beta value for each site. To avoid numerical errors, the 
beta value was multiplied by 105 before calculation. We 
also calculated the MIC and R-squared, once for each 
site, when the age label was permutated. The MIC was 
calculated using the minerva package for R . Using these 
procedures, we obtained the null distribution for MIC 
and MIC − ρ2 . We then calculated the P values for non-
linear associations for each site based on the null distri-
bution for the MIC. These P values were adjusted by the 
BH method, and the sites with adjusted P values < 0.05 
were identified as age-related sites; other methylation 
sites were considered to be non-correlated sites (NC). 
Next, we classified the age-related methylation sites into 
linear and nonlinear patterns. We considered the sites 
with MIC − ρ2 < 0.05 to have a linear pattern. Among 
these linear sites, those with Pearson correlation coeffi-
cients ≥ 0 were considered to be linearly increasing (LI), 
and those with Pearson correlation coefficients < 0 were 
considered to be linearly decreasing (LD). All other age-
related sites were defined as nonlinear patterns (NL). In 
the next step, we applied standard normalization to the 
methylation intensity for each site so that its mean = 0 
and standard deviation = 1. We estimated the function 
for age-related changes using nonparametric regression 
with spline smoothing which is implemented by   the 
smooth.spline function  in R with the settings all.knot = 
T and df = 4. The age grid was set to one-year intervals 
between the smallest and largest ages in the dataset. As 
a result, we obtained a set of functions and applied func-
tional principal component analysis (FPCA) to the set 
of functions for nonlinear age-related methylation sites. 
We used the FPCA function in the fdapace package for 
R with the settings FVEthreshold = 1 and usedBinned-
data = “OFF” [39]. As a result, we obtained the PC scores 
for each site, the mean function, and the eigenfunction. 
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Based on the sum of the eigenvalues of all the calculated 
coordinates, the contribution rate was calculated. In the 
next step, we applied Kmeans clustering to the PC coor-
dinates with a contribution rate > 1% as the top PCs. This 
implementation was conducted using the ClusterR pack-
age for R [40, 41]. The optimal number of clusters was 
detected automatically based on the distortion_fK crite-
rion by the Optimal_Clusters_KMeans function, where 
the option setting was obtained from the vignette docu-
ment (https:// cran.r- proje ct. org/ web/ packa ges/ Clust 
erR/ vigne ttes/ the_ clust erR_ packa ge. html). The maxi-
mum number of clusters whose distortion_fK criterion < 
threshold was adopted as the optimal number of clusters. 
Kmeans clustering was also conducted with KMeans_
rcpp using this optimal number of clusters, where the 
option setting was also obtained from the vignette set-
ting. Eventually, the NL sites were classified into the 
groups NL1, NL2...NLK, where K is the number of clus-
ters that was automatically detected. For each of the K 
clusters, the median values of the PC coordinates were 
defined as the center point, and the representative pat-
tern of each cluster f(Age) was reproduced by the formula 
f (Age) = µ(Age)+ M

i=1
PCi ∗�i(Age) , where µ(Age) is 

the mean function, PCi is the coordinate value of the i-th 
principal component of the center point, �i(Age) is the 
i-th eigenfunction, and M is the number of top PCs.

Gene ontology analysis
Gene Ontology analysis for the group of meth-
ylation sites was conducted using the Web-
GestaltR package for R [42]. As databases, 
“geneontology_Biological_Process_noRedundant” “gene-
ontology_Cellular_Component_noRedundant” and gene-
ontology_Molecular_Function_noRedundant” were used. 
The FDR threshold was set to 0.05. All methylation sites 
after preprocessing for each dataset were used as the 
background methylation sites. The most significant GO 
terms were defined in the order of decreasing P value 
where, if there were multiple GO terms with the same P 
value, they were sorted in descending order by enrich-
ment ratio.
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