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Figure 1: AI imitating player behavior
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1 INTRODUCTION
The online implementation for fighting games has evolved greatly
recently. The fighting game genre needs efficient netcode imple-
mentation, because inputs are very precise and even a latency of
a few frames will affect gameplay significantly. Of the two ma-
jor netcode implementations on the market, one is of particular
interest. Rollback Netcode, a recent invention and currently the
most popular implementation, can be seen as the future for online
fighting games. This technique attempts to emulate a more pleas-
ant experience by not delaying the inputs of the players. Instead,
when the connectivity is lost for one of the combatants, the netcode
tries to naively predict the inputs of the momentarily disconnected
player by assuming that the missing inputs are the same as the last
received actual player input, as shown in the figure below.

Figure 2: Naive rollback prediction of a player’s inputs

Once the link is reestablished, the netcode will compare the real
inputs to the ones predicted. If a difference between them affects
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the state of the game, it rollbacks, meaning it reverts to a previous
game state and applies the now received inputs of the player. This
procedure is barely noticeable in most cases allowing for a much
smoother experience for the players. However when the connection
loss is for more than a few frames, the forecast is less likely to be
correct and the rollbacks become much more noticeable.

We have come up with a solution to improve the efficacy of this
prediction aspect: Hybrid Rollback Netcode.

2 PREREQUISITES
To implement Rollback Netcode, a certain amount of prerequisites
must be met. First, the game must run on both machines and be
synchronised with a lockstep system. This system ensures that
both games are constantly in the same game state. Since player
devices must run in continuous synchronisation and the data must
be sent in real time, only the inputs of the players are sent. Then,
we execute the chosen commands on the other player’s machine.
Therefore, the game must be deterministic. This means that each
time a predetermined input is applied at a chosen game state, the
outcome will be the same. It also means that the inputs cannot be
floating values, which are estimates. Second, the game must have
complete control of the game state. This means the game state must
be fully encapsulated and serializable.

3 RELATIVE WORKS
Upon doing research about Rollback Netcode, we have found inter-
esting articles on the topic.

Martin Huynh and Fernando Valarino in their work "An Analy-
sis of Continuous Consistency Models in Real Time Peer-to-Peer
Fighting Games" [Huynh and Valarino 2019], proves that rollback
netcode is overall the best netcode for user experience. Since the
current naive prediction has a decent likelihood of failing and re-
sulting in a rollback, attemping to make the prediction better is
very relevant. This is why Anton Ehlert in his article "Improving
Input Prediction in Online Fighting Games" [Ehlert 2021], tries to
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improve the prediction of Rollback Netcode with machine learning
using the sliding window method [Dietterich 2021]. They trained
the model used with player inputs coming from replays. They then
emulated connection loss and saw if the forecasts are more accurate
than those of naive input prediction. They concluded that compared
to naive input prediction, the estimations of the input via intelligent
prediction are more efficient but create false positives. These are
much more noticeable for the players than wrong predictions from
the naive technique. While the success rate on the predictions is
better, it was not enough of an improvement to compensate for
false positives.

This paper inspired us to come up with our own answer to solve
this issue while also improving the success rate of predictions.

4 HYBRID ROLLBACK
The goal of Hybrid Rollback is to mitigate the problem of false posi-
tives from intelligent input prediction while improving the success
rate of the calculations. This will naturally reduce the likelihood of
false positives from occurring. To do that, Hybrid Rollback Netcode
has a unique model for each player on a specific character. Com-
pared to the model presented by Anton Ehlert [Ehlert 2021], this
machine learning model is more specific. It is able to pick out more
patterns depending on the player and how they play each character.
The figure below represents a successful prediction of the player’s
inputs.

Figure 3: Intelligent prediction preventing a rollback

However, since the model will need to assemble player-specific
data rather than draw from prepared generic data, it needs a sub-
stantial amount of games played by the user to perform well. Until
the AI model has enough data to be efficient, the Hybrid Rollback
Netcode employs the naive input prediction system instead. While
it is using the naive input prediction, it emulates rollbacks and
compares the intelligent prediction with the actual inputs of the
players. Once the success rate is high enough, it transitions to the
intelligent input prediction. This is the innovating point of the
Hybrid Rollback Netcode: the ability to switch between prediction
methods depending on which one is optimal.

4.1 Edge cases
There are scenarios that Hybrid Rollback Netcode needs to con-
sider. For example, if a user is playing on another player’s account.
Since the data is specific to the player, the predictions are likely
to be wrong. The Hybrid Rollback method needs to detect this by
emulating rollbacks and noticing that the predictions are suddenly
wrong. Similarly, the player might improve and change the way
they play. In these cases, despite a high average success rate on the
calculations, the Hybrid Rollback Netcode will transition back to
a naive input prediction system and start training the model with
the new data.

5 IMPLEMENTATION
Our goal is that Hybrid Rollback Netcode can be implemented in
any game that uses rollback. This is why we plugged our method
into the most popular, open source library GGPO [Cannon 2006]
for rollback implementation. It handles the connection and packet
loss between the users and the naive input prediction. We decided
to start our implementation on an open source fighting game called
Footsies[HiFight 2018]. The first step was to implement an AI focus-
ing solely on predicting what a player would do in any situation.

5.1 Retrieving data and model training
For the model to learn, we collected all the data that constitutes
the game state which a player can perceive. For the AI to be more
realistic, we retrace the game state across multiple frames because
a player reacts to past events in order to choose their action. We
recorded data of one specific player against various other players in
a dataset. With it, we trained a model with classification algorithms.
In order to get the best results, we cleaned its content. This process
involves making the data structures as simple as possible. It also
implies detecting correlations between various data.

5.2 Analysis on the model’s results

Figure 4: Evolution of the model’s accuracy and loss

Our model for Footsies[HiFight 2018] has reached an average
accuracy of 75% while diminishing loss values across generations.
The results can improve with more preprocessing on the dataset
with the previously mentioned methods and more data collected.

6 FUTUREWORKS
Currently we have only implemented our solution one game. We
would like to implement hybrid prediction on other more complex
games to further test the viability of ourmethod. Anothermajor part
of the future works revolves around generically and automatically
testing the quality of the data to train the models.
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