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Note on Software

The book’s Web site (http://www.idc.ac.il/tecs) provides the tools and materials necessary
to build all the hardware and software systems described in the book. These include a hard-
ware simulator, a CPU emulator, a VM emulator, and executable versions of the assembler,
virtual machine, compiler, and operating system described in the book. The Web site also in-
cludes all the project materials—about 200 test programs and test scripts, allowing incremental
development and unit-testing of each one of the 12 projects. All the supplied software tools
and project materials can be used as is on any computer equipped with either Windows or
Linux.
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Preface

What I hear, I forget; What I see, I remember; What I do, I understand.
—Confucius, 551-479 BC

Once upon a time, every computer specialist had a gestalt understanding of how
computers worked. The overall interactions among hardware, software, compilers,
and the operating system were simple and transparent enough to produce a coherent
picture of the computer’s operations. As modern computer technologies have become
increasingly more complex, this clarity is all but lost: the most fundamental ideas and
techniques in computer science—the very essence of the field—are now hidden under
many layers of obscure interfaces and proprietary implementations. An inevitable
consequence of this complexity has been specialization, leading to computer science
curricula of many courses, each covering a single aspect of the field.

We wrote this book because we felt that many computer science students are
missing the forest for the trees. The typical student is marshaled through a series of
courses in programming, theory, and engineering, without pausing to appreciate the
beauty of the picture at large. And the picture at large is such that hardware and
software systems are tightly interrelated through a hidden web of abstractions, inter-
faces, and contract-based implementations. Failure to see this intricate enterprise
in the flesh leaves many students and professionals with an uneasy feeling that, well,
they don’t fully understand what’s going on inside computers.

We believe that the best way to understand how computers work is to build one
from scratch. With that in mind, we came up with the following concept. Let’s spec-
ify a simple but sufficiently powerful computer system, and have the students build
its hardware platform and software hierarchy from the ground up, starting with
nothing more than elementary logic gates. And while we are at it, let’s do it right. We
say this because building a general-purpose computer from first principles is a huge
undertaking. Therefore, we identified a unique educational opportunity not only to



Preface

build the thing, but also to illustrate, in a hands-on fashion, how to effectively plan
and manage large-scale hardware and software development projects. In addition, we
sought to demonstrate the ability to construct, through recursive ascent and human
reasoning, fantastically complex and useful systems from nothing more than a few
primitive building blocks.

Scope

The book exposes students to a significant body of computer science knowledge,
gained through a series of hardware and software construction tasks. These tasks
demonstrate how theoretical and applied techniques taught in other computer science
courses are used in practice. In particular, the following topics are illustrated in a
hands-on fashion:

®  Hardware: Logic gates, Boolean arithmetic, multiplexors, flip-flops, registers,
RAM units, counters, Hardware Description Language (HDL), chip simulation and
testing.

®  Architecture:  ALU/CPU design and implementation, machine code, assembly
language programming, addressing modes, memory-mapped input/output (1/0O).

®  Operating systems: Memory management, math library, basic I/O drivers,
screen management, file I/O, high-level language support.

®  Programming languages: Object-based design and programming, abstract data
types, scoping rules, syntax and semantics, references.

m  Compilers: Lexical analysis, top-down parsing, symbol tables, virtual stack-
based machine, code generation, implementation of arrays and objects.

®  Data structures and algorithms: Stacks, hash tables, lists, recursion, arithmetic
algorithms, geometric algorithms, running time considerations.

®  Software engineering: Modular design, the interface/implementation paradigm,
API design and documentation, proactive test planning, programming at the large,
quality assurance.

All these topics are presented with a very clear purpose: building a modern com-
puter from the ground up. In fact, this has been our topic selection rule: The book
focuses on the minimal set of topics necessary for building a fully functioning com-
puter system. As it turns out, this set includes many fundamental ideas in applied
computer science.
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Courses

The book is intended for students of computer science and other engineering dis-
ciplines in colleges and universities, at both the undergraduate and graduate levels.
A course based on this book is “perpendicular” to the normal computer science
curriculum and can be taken at almost any point during the program. Two natural
slots are “CS-2”—immediately after learning programming, and “CS-199”—a
capstone course coming at the end of the program. The former course can provide
a systems-oriented introduction to computer science, and the latter an integrative,
project-oriented systems building course. Possible names for such courses may be
Constructive Introduction to Computer Science, Elements of Computing Systems,
Digital Systems Construction, Computer Construction Workshop, Let’s Build a
Computer, and the like. The book can support both one- and two-semester courses,
depending on topic selection and pace of work.

The book is completely self-contained, requiring only programming (in any lan-
guage) as a prerequisite. Thus, it lends itself not only to computer science majors,
but also to computer-savvy students seeking to gain a hands-on view of hardware
architectures, operating systems, and modern software engineering in the framework
of one course. The book and the accompanying Web site can also be used as a self-
study learning unit, suitable to students from any technical or scientific discipline
following a programming course.

Structure

The introduction chapter presents our approach and previews the main hardware
and software abstractions discussed in the book. This sets the stage for chapters 1—
12, each dedicated to a key hardware or software abstraction, a proposed imple-
mentation, and an actual project that builds and tests it. The first five chapters focus
on constructing the hardware platform of a simple modern computer. The remaining
seven chapters describe the design and implementation of a typical multi-tier soft-
ware hierarchy, culminating in the construction of an object-based programming
language and a simple operating system. The complete game plan is depicted in
figure P.1.

The book is based on an abstraction-implementation paradigm. Each chapter starts
with a Background section, describing relevant concepts and a generic hardware
or software system. The next section is always Specification, which provides a clear
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Figure P.1 Book and proposed course map, with chapter numbers in circles.

statement of the system’s abstraction—namely, the various services that it is
expected to deliver. Having presented the what, each chapter proceeds to discuss zow
the abstraction can be implemented, leading to a (proposed) Implementation section.
The next section is always Perspective, in which we highlight noteworthy issues left
out from the chapter. Each chapter ends with a Project section that provides step-by-
step building instructions, testing materials, and software tools for actually building
and unit-testing the system described in the chapter.

Projects

The computer system described in the book is for real—it can actually be built, and
it works! A reader who takes the time and effort to gradually build this computer will
gain a level of intimate understanding unmatched by mere reading. Hence, the book
is geared toward active readers who are willing to roll up their sleeves and build a
computer from the ground up.

Each chapter includes a complete description of a stand-alone hardware or soft-
ware development project. The four projects that construct the computer platform
are built using a simple Hardware Description Language (HDL) and simulated on a
hardware simulator supplied with the book. Five of the subsequent software projects
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(assembler, virtual machine I and II, and compiler I and II) can be written in any
modern programming language. The remaining three projects (low-level program-
ming, high-level programming, and the operating system) are written in the assembly
language and high-level language implemented in previous projects.

Project Tips There are twelve projects altogether. On average, each project entails
a weekly homework load in a typical, rigorous university-level course. The projects
are completely self-contained and can be done (or skipped) in any desired order. Of
course the ““full experience’ package requires doing all the projects in their order of
appearance, but this is just one option.

When we teach courses based on this book, we normally make two significant
concessions. First, except for obvious cases, we pay no attention to optimization,
leaving this very important subject to other, more specific courses. Second, when
developing the translators suite (assembler, VM implementation, and compiler), we
supply error-free test files (source programs), allowing the students to assume that
the inputs of these translators are error-free. This eliminates the need to write code
for handling errors and exceptions, making the software projects significantly more
manageable. Dealing with incorrect input is of course critically important, but once
again we assume that students can hone this skill elsewhere, for example, in dedi-
cated programming and software design courses.

Software

The book’s Web site (www.idc.ac.il/tecs) provides the tools and materials necessary
to build all the hardware and software systems described in the book. These include
a hardware simulator, a CPU emulator, a VM emulator, and executable versions
of the assembler, virtual machine, compiler, and operating system described in the
book. The Web site also includes all the project materials—about two hundred test
programs and test scripts, allowing incremental development and unit-testing of each
one of the twelve projects. All the supplied software tools and project materials can
be used as is on any computer equipped with either Windows or Linux.

Acknowledgments

All the software that accompanies the book was developed by our students at the
Efi Arazi School of Computer Science of the Interdisciplinary Center Herzliya, a new
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Israeli university. The chief software architect was Yaron Ukrainitz, and the devel-
opers included Iftach Amit, Nir Rozen, Assaf Gad, and Hadar Rosen-Sior. Working
with these student-developers has been a great pleasure, and we feel proud and for-
tunate to have had the opportunity to play a role in their education. We also wish
to thank our teaching assistants, Muawyah Akash, David Rabinowitz, Ran Navok,
and Yaron Ukrainitz, who helped us run early versions of the course that led to this
book. Thanks also to Jonathan Gross and Oren Baranes, who worked on related
projects under the excellent supervision of Dr. Danny Seidner, to Uri Zeira and Oren
Cohen, for designing an integrated development environment for the Jack language,
to Tal Achituv, for useful advice on open source issues, and to Aryeh Schnall, for
careful reading and meticulous editing suggestions.

Writing the book without taking any reduction in our regular professional duties
was not simple, and so we wish to thank esti romem, administrative director of
the EFI Arazi School of Computer Science, for holding the fort in difficult times.
Finally, we are indebted to the many students who endured early versions of this
book and helped polish it through numerous bug reports. In the process, we hope,
they have learned first-hand that insight of James Joyce, that mistakes are the portals
of discovery.

Noam Nisan

Shimon Schocken
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Introduction: Hello, World Below

The true voyage of discovery consists not of going to new places, but of having a new pair of eyes.
—DMarcel Proust (1871-1922)

This book is a voyage of discovery. You are about to learn three things: how com-
puters work, how to break complex problems into manageable modules, and how to
develop large-scale hardware and software systems. This will be a hands-on process
as you create a complete and working computer system from the ground up. The
lessons you will learn, which are far more important and general than the computer
itself, will be gained as side effects of this activity. According to the psychologist Carl
Rogers, “the only kind of learning which significantly influences behavior is self-
discovered or self-appropriated—truth that has been assimilated in experience.” This
chapter sketches some of the discoveries, truths, and experiences that lie ahead.

The World Above

If you have taken any programming course, you’ve probably encountered something
like the program below early in your education. This particular program is written in
Jack—a simple high-level language that has a conventional object-based syntax.

// First example in Programming 101:
class Main {
function void main() {
do Output.printString("Hello World");
do Output.println(); // New line.
return;
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Trivial programs like Hello World are deceptively simple. Did you ever think
about what it takes to actually run such a program on a computer? Let’s look under
the hood. For starters, note that the program is nothing more than a bunch of dead
characters stored in a text file. Thus, the first thing we must do is parse this text,
uncover its semantics, and reexpress it in some low-level language understood by our
computer. The result of this elaborate translation process, known as compilation, will
be yet another text file, containing machine-level code.

Of course machine language is also an abstraction—an agreed upon set of binary
codes. In order to make this abstract formalism concrete, it must be realized by some
hardware architecture. And this architecture, in turn, is implemented by a certain chip
set—registers, memory units, ALU, and so on. Now, every one of these hardware
devices is constructed from an integrated package of elementary logic gates. And
these gates, in turn, can be built from primitive gates like Nand and Nor. Of course
every one of these gates consists of several switching devices, typically implemented
by transistors. And each transistor is made of— Well, we won’t go further than that,
because that’s where computer science ends and physics starts.

You may be thinking: “On my computer, compiling and running a program is
much easier—all I have to do is click some icons or write some commands!”’ Indeed,
a modern computer system is like a huge iceberg, and most people get to see only
the top. Their knowledge of computing systems is sketchy and superficial. If, how-
ever, you wish to explore beneath the surface, then lucky you! There’s a fascinating
world down there, made of some of the most beautiful stuff in computer science. An
intimate understanding of this underworld is one of the things that separate naive
programmers from sophisticated developers—people who can create not only appli-
cation programs, but also complex hardware and software technologies. And the best
way to understand how these technologies work—and we mean understand them in
the marrow of your bones—is to build a complete computer system from scratch.

Abstractions

You may wonder how it is humanly possible to construct a complete computer sys-
tem from the ground up, starting with nothing more than elementary logic gates.
This must be an enormously complex enterprise! We deal with this complexity by
breaking the project into modules, and treating each module separately, in a stand-
alone chapter. You might then wonder, how is it possible to describe and construct
these modules in isolation? Obviously they are all interrelated! As we will show
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throughout the book, a good modular design implies just that: You can work on the
individual modules independently, while completely ignoring the rest of the system.
In fact, you can even build these modules in any desired order!

It turns out that this strategy works well thanks to a special gift unique to humans:
our ability to create and use abstractions. The notion of abstraction, central to
many arts and sciences, is normally taken to be a mental expression that seeks to
separate in thought, and capture in some concise manner, the essence of some entity.
In computer science, we take the notion of abstraction very concretely, defining it to
be a statement of ““‘what the entity does’ and ignoring the details of “how it does it.”
This functional description must capture all that needs to be known in order to use
the entity’s services, and nothing more. All the work, cleverness, information, and
drama that went into the entity’s implementation are concealed from the client who
is supposed to use it, since they are simply irrelevant. The articulation, use, and im-
plementation of such abstractions are the bread and butter of our professional prac-
tice: Every hardware and software developer is routinely defining abstractions (also
called “interfaces”) and then implementing them, or asking other people to imple-
ment them. The abstractions are often built layer upon layer, resulting in higher and
higher levels of capabilities.

Designing good abstractions is a practical art, and one that is best acquired
by seeing many examples. Therefore, this book is based on an abstraction-
implementation paradigm. Each book chapter presents a key hardware or software
abstraction, and a project designed to actually implement it. Thanks to the modular
nature of these abstractions, each chapter also entails a stand-alone intellectual unit,
inviting the reader to focus on two things only: understanding the given abstrac-
tion (a rich world of its own), and then implementing it using abstract services and
building blocks from the level below. As you push ahead in this journey, it will be
rather thrilling to look back and appreciate the computer that is gradually taking
shape in the wake of your efforts.

The World Below

The multi-tier collection of abstractions underlying the design of a computing sys-
tem can be described top-down, showing how high-level abstractions can be reduced
into, or expressed by, simpler ones. This structure can also be described bottom-up,
focusing on how lower-level abstractions can be used to construct more complex
ones. This book takes the latter approach: We begin with the most basic elements—
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primitive logic gates—and work our way upward, culminating in the construction
of a general-purpose computer system. And if building such a computer is like
climbing Mount Everest, then planting a flag on the mountaintop is like having the
computer run a program written in some high-level language. Since we are going
to ascend this mountain from the ground up, let us survey the book plan in the op-
posite direction—from the top down—starting in the familiar territory of high-level
programming.

Our tour consists of three main legs. We start at the top, where people write
and run high-level programs (chapters 9 and 12). We then survey the road down to
hardware land, tracking the fascinating twists and curves of translating high-level
programs into machine language (chapters 6, 7, 8, 10, 11). Finally, we reach the low
grounds of our journey, describing how a typical hardware platform is actually con-
structed (chapters 1-5).

High-Level Language Land

The topmost abstraction in our journey is the art of programming, where entrepre-
neurs and programmers dream up applications and write software that implements
them. In doing so, they blissfully take for granted the two key tools of their trade:
the high-level language in which they work, and the rich library of services that sup-
ports it. For example, consider the statement do Output.printString(‘‘Hello
World’ ’). This code invokes an abstract service for printing strings—a service that
must be implemented somewhere. Indeed, a bit of drilling reveals that this service
is usually supplied jointly by the host operating system and the standard language
library.

What then is a standard language library? And how does an operating system (OS)
work? These questions are taken up in chapter 12. We start by presenting key algo-
rithms relevant to OS services, and then use them to implement various mathemati-
cal functions, string operations, memory allocation tasks, and input/output (1/O)
routines. The result is a simple operating system, written in the Jack programming
language.

Jack is a simple object-based language, designed for a single purpose: to illustrate
the key software engineering principles underlying the design and implementation
of modern programming languages like Java and C#. Jack is presented in chapter 9,
which also illustrates how to build Jack-based applications, for example, computer
games. If you have any programming experience with a modern object-oriented lan-
guage, you can start writing Jack programs right away and watch them execute on
the computer platform developed in previous chapters. However, the goal of chapter
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9 is not to turn you into a Jack programmer, but rather to prepare you to develop the
compiler and operating system described in subsequent chapters.

The Road Down to Hardware Land

Before any program can actually run and do something for real, it must be translated
into the machine language of some target computer platform. This compilation pro-
cess is sufficiently complex to be broken into several layers of abstraction, and these
usually involve three translators: a compiler, a virtual machine implementation, and
an assembler. We devote five book chapters to this trio, as follows.

The translation task of the compiler is performed in two conceptual stages: syntax
analysis and code generation. First, the source text is analyzed and grouped into
meaningful language constructs that can be kept in a data structure called a “parse
tree.” These parsing tasks, collectively known as syntax analysis, are described in
chapter 10. This sets the stage for chapter 11, which shows how the parse tree can be
recursively processed to yield a program written in an intermediate language. As with
Java and C#, the intermediate code generated by the Jack compiler describes a se-
quence of generic steps operating on a stack-based virtual machine (VM). This clas-
sical model, as well as a VM implementation that realizes it on an actual computer,
are elaborated in chapters 7-8. Since the output of our VM implementation is a large
assembly program, we have to translate it further into binary code. Writing an
assembler is a relatively simple task, taken up in chapter 6.

Hardware Land

We have reached the most profound step in our journey—the descent from machine
language to the machine itself—the point where software finally meets hardware.
This is also the point where Hack enters the picture. Hack is a general-purpose
computer system, designed to strike a balance between simplicity and power. On the
one hand, the Hack architecture can be built in just a few hours of work, using the
guidelines and chip set presented in chapters 1-3. At the same time, Hack is suffi-
ciently general to illustrate the key operating principles and hardware elements un-
derlying the design of any digital computer.

The machine language of the Hack platform is specified in chapter 4, and the
computer design itself is discussed and specified in chapter 5. Readers can build this
computer as well as all the chips and gates mentioned in the book on their home
computers, using the software-based hardware simulator supplied with the book
and the Hardware Description Language (HDL) documented in appendix A. All the
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developed hardware modules can be tested using supplied test scripts, written in a
scripting language documented in appendix B.

The computer that emerges from this construction is based on typical components
like CPU, RAM, ROM, and simulated screen and keyboard. The computer’s regis-
ters and memory systems are built in chapter 3, following a brief discussion of
sequential logic. The computer’s combinational logic, culminating in the Arithmetic
Logic Unit (ALU) chip, is built in chapter 2, following a brief discussion of Boolean
arithmetic. All the chips presented in these chapters are based on a suite of elemen-
tary logic gates, presented and built in chapter 1.

Of course the layers of abstraction don’t stop here. Elementary logic gates are
built from transistors, using technologies based on solid-state physics and ultimately
quantum mechanics. Indeed, this is where the abstractions of the natural world, as
studied and formulated by physicists, become the building blocks of the abstractions
of the synthetic worlds built and studied by computer scientists.

This marks the end of our grand tour preview—the descent from the high-level
peaks of object-based software, all the way down to the bricks and mortar of the
hardware platform. This typical modular rendition of a multi-tier system represents
not only a powerful engineering paradigm, but also a central dogma in human rea-
soning, going back at least 2,500 years:

We deliberate not about ends, but about means. For a doctor does not deliberate whether he shall
heal, nor an orator whether he shall persuade ... They assume the end and consider how and by
what means it is attained, and if it seems easily and best produced thereby; while if it is achieved
by other means, they consider how it will be achieved and by what means this will be achieved,
until they come to the first cause ... and what is last in the order of analysis seems to be first in
the order of becoming. (Aristotles, Nicomachean Ethics, Book 111, 3, 1112b)

So here’s the plan, in the order of becoming. Starting with the construction of ele-
mentary logic gates (chapter 1), we go bottom-up to combinational and sequential
chips (chapters 2-3), through the design of a typical computer architecture (chapters
4-5) and a typical software hierarchy (chapters 6-8), all the way to implementing
a compiler (chapters 10—11) for a modern object-based language (chapter 9), ending
with the design and implementation of a simple operating system (chapter 12). We
hope that the reader has gained a general idea of what lies ahead and is eager to push
forward on this grand tour of discovery. So, assuming that you are ready and set, let
the countdown start: 1, 0, Go!
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Such simple things, And we make of them something so complex it defeats us, Almost.
—John Ashbery (b. 1927), American poet

Every digital device—Dbe it a personal computer, a cellular telephone, or a network
router—is based on a set of chips designed to store and process information. Al-
though these chips come in different shapes and forms, they are all made from the
same building blocks: Elementary logic gates. The gates can be physically imple-
mented in many different materials and fabrication technologies, but their logical
behavior is consistent across all computers. In this chapter we start out with one
primitive logic gate—Nand—and build all the other logic gates from it. The result is
a rather standard set of gates, which will be later used to construct our computer’s
processing and storage chips. This will be done in chapters 2 and 3, respectively.

All the hardware chapters in the book, beginning with this one, have the same
structure. Each chapter focuses on a well-defined task, designed to construct or inte-
grate a certain family of chips. The prerequisite knowledge needed to approach this
task is provided in a brief Background section. The next section provides a complete
Specification of the chips’ abstractions, namely, the various services that they should
deliver, one way or another. Having presented the what, a subsequent Implemen-
tation section proposes guidelines and hints about how the chips can be actually
implemented. A Perspective section rounds up the chapter with concluding com-
ments about important topics that were left out from the discussion. Each chapter
ends with a technical Project section. This section gives step-by-step instructions for
actually building the chips on a personal computer, using the hardware simulator
supplied with the book.

This being the first hardware chapter in the book, the Background section is
somewhat lengthy, featuring a special section on hardware description and simulation
tools.
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1.1 Background

This chapter focuses on the construction of a family of simple chips called Boolean
gates. Since Boolean gates are physical implementations of Boolean functions, we
start with a brief treatment of Boolean algebra. We then show how Boolean gates
implementing simple Boolean functions can be interconnected to deliver the func-
tionality of more complex chips. We conclude the background section with a descrip-
tion of how hardware design is actually done in practice, using software simulation
tools.

1.1.1 Boolean Algebra

Boolean algebra deals with Boolean (also called binary) values that are typically
labeled true/false, 1/0, yes/no, on/off, and so forth. We will use 1 and 0. A Boolean
function is a function that operates on binary inputs and returns binary outputs.
Since computer hardware is based on the representation and manipulation of binary
values, Boolean functions play a central role in the specification, construction, and
optimization of hardware architectures. Hence, the ability to formulate and analyze
Boolean functions is the first step toward constructing computer architectures.

Truth Table Representation The simplest way to specify a Boolean function is to
enumerate all the possible values of the function’s input variables, along with the
function’s output for each set of inputs. This is called the truth table representation of
the function, illustrated in figure 1.1.

The first three columns of figure 1.1 enumerate all the possible binary values of the
function’s variables. For each one of the 2" possible tuples v; ... v, (here n = 3), the
last column gives the value of f(v;...v,).

Boolean Expressions In addition to the truth table specification, a Boolean function
can also be specified using Boolean operations over its input variables. The basic
Boolean operators that are typically used are “And” (x And y is 1 exactly when both
xand y are 1) “Or” (x Or y is 1 exactly when either x or y or both are 1), and “Not”
(Not x is 1 exactly when x is 0). We will use a common arithmetic-like notation for
these operations: x - y (or xy) means x And y, x+ y means x Or y, and X means
Not x.

To illustrate, the function defined in figure 1.1 is equivalently given by the Boolean
expression f(x, y,z) = (x+ y) - Z. For example, let us evaluate this expression on the
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0 0 O 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
I 1 1 0

Figure 1.1 Truth table representation of a Boolean function (example).

inputs x =0, y=1, z=0 (third row in the table). Since y is 1, it follows that
x+y=1and thus 1-0=1-1=1. The complete verification of the equivalence
between the expression and the truth table is achieved by evaluating the expression
on each of the eight possible input combinations, verifying that it yields the same
value listed in the table’s right column.

Canonical Representation As it turns out, every Boolean function can be expressed
using at least one Boolean expression called the canonical representation. Starting
with the function’s truth table, we focus on all the rows in which the function has
value 1. For each such row, we construct a term created by And-ing together literals
(variables or their negations) that fix the values of all the row’s inputs. For example,
let us focus on the third row in figure 1.1, where the function’s value is 1. Since the
variable values in this row are x =0, y = 1, z = 0, we construct the term xyz. Fol-
lowing the same procedure, we construct the terms xyz and xyz for rows 5 and 7.
Now, if we Or-together all these terms (for all the rows where the function has value
1), we get a Boolean expression that is equivalent to the given truth table. Thus the
canonical representation of the Boolean function shown in figure 1.1 is f(x, y,z) =
XyZ + xyz + xyz. This construction leads to an important conclusion: Every Boolean
function, no matter how complex, can be expressed using three Boolean operators
only: And, Or, and Not.

Two-Input Boolean Functions An inspection of figure 1.1 reveals that the number of
Boolean functions that can be defined over 7 binary variables is 22". For example,
the sixteen Boolean functions spanned by two variables are listed in figure 1.2. These
functions were constructed systematically, by enumerating all the possible 4-wise com-
binations of binary values in the four right columns. Each function has a conventional
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x 0 0 1 1
Function

y 01 0 1
Constant 0 0 0 0 0 O
And xX-y 0 0 0 1
x And Not y Xy 0 0 I O
X X 0 0 1 1
Not x And y Xy 0 1 0 O
y y 0 1 0 1
Xor X-y+Xx-y 0 1 1 0
Or x+y 0 1 1 1
Nor x+y 1 0 0 O
Equivalence X-y+Xx-y 1 0 0 1
Not y y 1 0 1 O
If y then x x+y I 0 1 1
Not x X 1 1 0 O
If x then y X+ I 1 0 1
Nand Xy 1 1 1 0
Constant 1 1 I 1 1 1

Figure 1.2 All the Boolean functions of two variables.

name that seeks to describe its underlying operation. Here are some examples: The
name of the Nor function is shorthand for Not-Or: Take the Or of x and y, then
negate the result. The Xor function—shorthand for “exclusive or”’—returns 1 when
its two variables have opposing truth-values and 0 otherwise. Conversely, the
Equivalence function returns 1 when the two variables have identical truth-values.
The If-x-then-y function (also known as x — y, or “x Implies y”) returns 1 when x is
0 or when both x and y are 1. The other functions are self-explanatory.

The Nand function (as well as the Nor function) has an interesting theoretical
property: Each one of the operations And, Or, and Not can be constructed from it,
and it alone (e.g., x Or y = (x Nand x) Nand (y Nand y). And since every Boolean
function can be constructed from And, Or, and Not operations using the canonical
representation method, it follows that every Boolean function can be constructed
from Nand operations alone. This result has far-reaching practical implications:
Once we have in our disposal a physical device that implements Nand, we can use
many copies of this device (wired in a certain way) to implement in hardware any
Boolean function.
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1.1.2 Gate Logic

A gate is a physical device that implements a Boolean function. If a Boolean function
S operates on n variables and returns m binary results (in all our examples so far, m
was 1), the gate that implements f will have n input pins and m output pins. When we
put some values v;...v, in the gate’s input pins, the gate’s “logic”’—its internal
structure—should compute and output f(v;...v,). And just like complex Boolean
functions can be expressed in terms of simpler functions, complex gates are com-
posed from more elementary gates. The simplest gates of all are made from tiny
switching devices, called transistors, wired in a certain topology designed to effect the
overall gate functionality.

Although most digital computers today use electricity to represent and transmit
binary data from one gate to another, any alternative technology permitting switch-
ing and conducting capabilities can be employed. Indeed, during the last fifty years,
researchers have built many hardware implementations of Boolean functions, includ-
ing magnetic, optical, biological, hydraulic, and pneumatic mechanisms. Today, most
gates are implemented as transistors etched in silicon, packaged as chips. In this book
we use the words chip and gate interchangeably, tending to use the term gates for
simple chips.

The availability of alternative switching technology options, on the one hand, and
the observation that Boolean algebra can be used to abstract the behavior of any
such technology, on the other, is extremely important. Basically, it implies that
computer scientists don’t have to worry about physical things like electricity, circuits,
switches, relays, and power supply. Instead, computer scientists can be content with
the abstract notions of Boolean algebra and gate logic, trusting that someone else
(the physicists and electrical engineers—bless their souls) will figure out how to
actually realize them in hardware. Hence, a primitive gate (see figure 1.3) can be
viewed as a black box device that implements an elementary logical operation in one
way or another—we don’t care how. A hardware designer starts from such primitive
gates and designs more complicated functionality by interconnecting them, leading to
the construction of composite gates.

a —| a .
b | And out b out in o— out

Figure 1.3 Standard symbolic notation of some elementary logic gates.
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Gate interface Gate implementation
a—| a
b—— And out And
C— b
And — out
If a=b=c=1 then out=1 c
else out=0

Figure 1.4 Composite implementation of a three-way And gate. The rectangle on the right
defines the conceptual boundaries of the gate interface.

Primitive and Composite Gates Since all logic gates have the same input and out-
put semantics (0’s and 1’s), they can be chained together, creating composite gates of
arbitrary complexity. For example, suppose we are asked to implement the 3-way
Boolean function And(a,b,c). Using Boolean algebra, we can begin by observing
that a-b-c¢ = (a-b) ¢, or, using prefix notation, And(a,b,c) = And(And(a,b),c).
Next, we can use this result to construct the composite gate depicted in figure 1.4.

The construction described in figure 1.4 is a simple example of gate logic, also
called logic design. Simply put, logic design is the art of interconnecting gates in
order to implement more complex functionality, leading to the notion of composite
gates. Since composite gates are themselves realizations of (possibly complex)
Boolean functions, their “outside appearance” (e.g., left side of figure 1.4) looks just
like that of primitive gates. At the same time, their internal structure can be rather
complex.

We see that any given logic gate can be viewed from two different perspectives:
external and internal. The right-hand side of figure 1.4 gives the gate’s internal
architecture, or implementation, whereas the left side shows only the gate interface,
namely, the input and output pins that it exposes to the outside world. The former is
relevant only to the gate designer, whereas the latter is the right level of detail for
other designers who wish to use the gate as an abstract off-the-shelf component,
without paying attention to its internal structure.

Let us consider another logic design example—that of a Xor gate. As discussed
before, Xor(a,b) is 1 exactly when either @ is 1 and b is 0, or when a is 0 and b is
1. Said otherwise, Xor(a,b) = Or(And(a, Not(b)), And(Not(a),b)). This definition
leads to the logic design shown in figure 1.5.

Note that the gate interface is unique: There is only one way to describe it, and this
is normally done using a truth table, a Boolean expression, or some verbal specifica-
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a And
t
b ) ou 4%

And

Figure 1.5 Xor gate, along with a possible implementation.

tion. This interface, however, can be realized using many different implementations,
some of which will be better than others in terms of cost, speed, and simplicity. For
example, the Xor function can be implemented using four, rather than five, And, Or,
and Not gates. Thus, from a functional standpoint, the fundamental requirement of
logic design is that the gate implementation will realize its stated interface, in one way
or another. From an efficiency standpoint, the general rule is to try to do more with
less, that is, use as few gates as possible.

To sum up, the art of logic design can be described as follows: Given a gate spec-
ification (interface), find an efficient way to implement it using other gates that
were already implemented. This, in a nutshell, is what we will do in the rest of this
chapter.

1.1.3 Actual Hardware Construction

Having described the logic of composing complex gates from simpler ones, we are
now in a position to discuss how gates are actually built. Let us start with an inten-
tionally naive example.

Suppose we open a chip fabrication shop in our home garage. Our first contract is
to build a hundred Xor gates. Using the order’s downpayment, we purchase a sol-
dering gun, a roll of copper wire, and three bins labeled “And gates,” “Or gates,”
and “Not gates,” each containing many identical copies of these elementary logic
gates. Each of these gates is sealed in a plastic casing that exposes some input and
output pins, as well as a power supply plug. To get started, we pin figure 1.5 to our
garage wall and proceed to realize it using our hardware. First, we take two And
gates, two Not gates, and one Or gate, and mount them on a board according to the
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figure’s layout. Next, we connect the chips to one another by running copper wires
among them and by soldering the wire ends to the respective input/output pins.
Now, if we follow the gate diagram carefully, we will end up having three exposed
wire ends. We then solder a pin to each one of these wire ends, seal the entire device
(except for the three pins) in a plastic casing, and label it “Xor.” We can repeat this
assembly process many times over. At the end of the day, we can store all the
chips that we’ve built in a new bin and label it “Xor gates.” If we (or other people)
are asked to construct some other chips in the future, we’ll be able to use these Xor
gates as elementary building blocks, just as we used the And, Or, and Not gates
before.

As the reader has probably sensed, the garage approach to chip production leaves
much to be desired. For starters, there is no guarantee that the given chip diagram is
correct. Although we can prove correctness in simple cases like Xor, we cannot do so
in many realistically complex chips. Thus, we must settle for empirical testing: Build
the chip, connect it to a power supply, activate and deactivate the input pins in vari-
ous configurations, and hope that the chip outputs will agree with its specifications. If
the chip fails to deliver the desired outputs, we will have to tinker with its physical
structure—a rather messy affair. Further, even if we will come up with the right de-
sign, replicating the chip assembly process many times over will be a time-consuming
and error-prone affair. There must be a better way!

1.1.4 Hardware Description Language (HDL)

Today, hardware designers no longer build anything with their bare hands. Instead,
they plan and optimize the chip architecture on a computer workstation, using
structured modeling formalisms like Hardware Description Language, or HDL (also
known as VHDL, where V stands for Virtual). The designer specifies the chip struc-
ture by writing an HDL program, which is then subjected to a rigorous battery of
tests. These tests are carried out virtually, using computer simulation: A special
software tool, called a hardware simulator, takes the HDL program as input and
builds an image of the modeled chip in memory. Next, the designer can instruct the
simulator to test the virtual chip on various sets of inputs, generating simulated chip
outputs. The outputs can then be compared to the desired results, as mandated by
the client who ordered the chip built.

In addition to testing the chip’s correctness, the hardware designer will typi-
cally be interested in a variety of parameters such as speed of computation, energy
consumption, and the overall cost implied by the chip design. All these param-



15

Boolean Logic

eters can be simulated and quantified by the hardware simulator, helping the de-
signer optimize the design until the simulated chip delivers desired cost/performance
levels.

Thus, using HDL, one can completely plan, debug, and optimize the entire chip
before a single penny is spent on actual production. When the HDL program is
deemed complete, that is, when the performance of the simulated chip satisfies the
client who ordered it, the HDL program can become the blueprint from which many
copies of the physical chip can be stamped in silicon. This final step in the chip
life cycle—from an optimized HDL program to mass production—is typically out-
sourced to companies that specialize in chip fabrication, using one switching tech-
nology or another.

Example: Building a Xor Gate As we have seen in figures 1.2 and 1.5, one way to
define exclusive or is Xor(a, b) = Or(And(a, Not(b)), And(Not(a), b)). This logic can
be expressed either graphically, as a gate diagram, or textually, as an HDL program.
The latter program is written in the HDL variant used throughout this book, defined
in appendix A. See figure 1.6 for the details.

Explanation An HDL definition of a chip consists of a header section and a parts
section. The header section specifies the chip interface, namely the chip name and the
names of its input and output pins. The parts section describes the names and topol-
ogy of all the lower-level parts (other chips) from which this chip is constructed. Each
part is represented by a statement that specifies the part name and the way it is con-
nected to other parts in the design. Note that in order to write such statements legi-
bly, the HDL programmer must have a complete documentation of the underlying
parts’ interfaces. For example, figure 1.6 assumes that the input and output pins of
the Not gate are labeled in and out, and those of And and Or are labeled a, b and
out. This API-type information is not obvious, and one must have access to it before
one can plug the chip parts into the present code.

Inter-part connections are described by creating and connecting internal pins,
as needed. For example, consider the bottom of the gate diagram, where the output
of a Not gate is piped into the input of a subsequent And gate. The HDL code
describes this connection by the pair of statements Not(...,out=nota) and
And(a=nota,...). The first statement creates an internal pin (outbound wire)
named nota, feeding out into it. The second statement feeds the value of nota
into the a input of an And gate. Note that pins may have an unlimited fan out.
For example, in figure 1.6, each input is simultaneously fed into two gates. In gate
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a 2 out
And
a
out
b — out
And out
b

HDL program (Xor .hdl) Test script (Xor .tst) Output file (Xor .out)
/* Xor (exclusive or) gate: load Xor.hdl, a | b | out

If a<>b out=1 else out=0. */ output-list a, b, out; E _I— (; _I _0_ -
CHIP Xor { set a 0, set b 0, o | 1 1 1

IN a, b; eval, output; 11 0 | 1

OUT out; set a 0, set b 1, 10 1 1 o

PARTS: eval, output;

Not(in=a, out=nota); set a 1, set b 0,

Not(in=b, out=notb); eval, output;

And(a=a, b=notb, out=wl); set a 1, set b 1,

And(a=nota, b=b, out=w2); eval, output;

Or(a=wl, b=w2, out=out);
}

Figure 1.6 HDL implementation of a Xor gate.

diagrams, multiple connections are described using forks. In HDL, the existence of
forks is implied by the code.

Testing Rigorous quality assurance mandates that chips be tested in a specific, rep-
licable, and well-documented fashion. With that in mind, hardware simulators are
usually designed to run fest scripts, written in some scripting language. For example,
the test script in figure 1.6 is written in the scripting language understood by the
hardware simulator supplied with the book. This scripting language is described fully
in appendix B.

Let us give a brief description of the test script from figure 1.6. The first two lines
of the test script instruct the simulator to load the Xor.hdl program and get ready to
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print the values of selected variables. Next, the script lists a series of testing scenarios,
designed to simulate the various contingencies under which the Xor chip will have to
operate in “‘real-life” situations. In each scenario, the script instructs the simulator to
bind the chip inputs to certain data values, compute the resulting output, and record
the test results in a designated output file. In the case of simple gates like Xor, one
can write an exhaustive test script that enumerates all the possible input values of the
gate. The resulting output file (right side of figure 1.6) can then be viewed as a com-
plete empirical proof that the chip is well designed. The luxury of such certitude is
not feasible in more complex chips, as we will see later.

1.1.5 Hardware Simulation

Since HDL is a hardware construction language, the process of writing and debug-
ging HDL programs is quite similar to software development. The main difference is
that instead of writing code in a language like Java, we write it in HDL, and instead
of using a compiler to translate and test the code, we use a hardware simulator. The
hardware simulator is a computer program that knows how to parse and interpret
HDL code, turn it into an executable representation, and test it according to the
specifications of a given test script. There exist many commercial hardware simu-
lators on the market, and these vary greatly in terms of cost, complexity, and ease of
use. Together with this book we provide a simple (and free!) hardware simulator
that is sufficiently powerful to support sophisticated hardware design projects. In
particular, the simulator provides all the necessary tools for building, testing, and
integrating all the chips presented in the book, leading to the construction of a
general-purpose computer. Figure 1.7 illustrates a typical chip simulation session.

1.2 Specification

This section specifies a typical set of gates, each designed to carry out a common
Boolean operation. These gates will be used in the chapters that follow to construct
the full architecture of a typical modern computer. Our starting point is a single
primitive Nand gate, from which all other gates will be derived recursively. Note that
we provide only the gates’ specifications, or interfaces, delaying implementation
details until a subsequent section. Readers who wish to construct the specified gates
in HDL are encouraged to do so, referring to appendix A as needed. All the gates
can be built and simulated on a personal computer, using the hardware simulator
supplied with the book.
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Figure 1.7 A screen shot of simulating an Xor chip on the hardware simulator. The simulator
state is shown just after the test script has completed running. The pin values correspond to the
last simulation step (¢ = b = 1). Note that the output file generated by the simulation is con-
sistent with the Xor truth table, indicating that the loaded HDL program delivers a correct
Xor functionality. The compare file, not shown in the figure and typically specified by the
chip’s client, has exactly the same structure and contents as that of the output file. The fact
that the two files agree with each other is evident from the status message displayed at the
bottom of the screen.
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1.2.1 The Nand Gate

The starting point of our computer architecture is the Nand gate, from which all
other gates and chips are built. The Nand gate is designed to compute the following
Boolean function:

a b || Nand(a, b)
0 0 1
0 1 1
I 0 1
1 1 0

Throughout the book, we use “chip API boxes’ to specify chips. For each chip, the
API specifies the chip name, the names of its input and output pins, the function or
operation that the chip effects, and an optional comment.

1.2.2 Basic Logic Gates

Some of the logic gates presented here are typically referred to as “‘elementary” or
“basic.” At the same time, every one of them can be composed from Nand gates
alone. Therefore, they need not be viewed as primitive.

Not The single-input Not gate, also known as “converter,”” converts its input from
0 to 1 and vice versa. The gate API is as follows:
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And The And function returns 1 when both its inputs are 1, and 0 otherwise.

Or The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

Xor The Xor function, also known as “exclusive or,” returns 1 when its two inputs
have opposing values, and 0 otherwise.

Multiplexor A multiplexor (figure 1.8) is a three-input gate that uses one of the
inputs, called “selection bit,” to select and output one of the other two inputs, called
“data bits.” Thus, a better name for this device might have been selector. The
name multiplexor was adopted from communications systems, where similar
devices are used to serialize (multiplex) several input signals over a single output
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Figure 1.8 Multiplexor. The table at the top right is an abbreviated version of the truth table
on the left.
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Figure 1.9 Demultiplexor.

Demultiplexor A demultiplexor (figure 1.9) performs the opposite function of a
multiplexor: It takes a single input and channels it to one of two possible outputs
according to a selector bit that specifies which output to chose.

1.2.3 Multi-Bit Versions of Basic Gates

Computer hardware is typically designed to operate on multi-bit arrays called
“buses.” For example, a basic requirement of a 32-bit computer is to be able to
compute (bit-wise) an And function on two given 32-bit buses. To implement this
operation, we can build an array of 32 binary And gates, each operating separately
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on a pair of bits. In order to enclose all this logic in one package, we can encapsulate
the gates array in a single chip interface consisting of two 32-bit input buses and one
32-bit output bus.

This section describes a typical set of such multi-bit logic gates, as needed for the
construction of a typical 16-bit computer. We note in passing that the architecture of
n-bit logic gates is basically the same irrespective of n’s value.

When referring to individual bits in a bus, it is common to use an array syntax.
For example, to refer to individual bits in a 16-bit bus named data, we use the no-
tation data[0], data[1],. .., data[15].

Multi-Bit Not An n-bit Not gate applies the Boolean operation Not to every one of
the bits in its n-bit input bus:

Multi-Bit And An n-bit And gate applies the Boolean operation And to every one
of the n bit-pairs arrayed in its two n-bit input buses:

Multi-Bit Or An n-bit Or gate applies the Boolean operation Or to every one of the
n bit-pairs arrayed in its two n-bit input buses:
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Multi-Bit Multiplexor An n-bit multiplexor is exactly the same as the binary multi-
plexor described in figure 1.8, except that the two inputs are each n-bit wide; the
selector is a single bit.

1.2.4 Multi-Way Versions of Basic Gates

Many 2-way logic gates that accept two inputs have natural generalization to multi-
way variants that accept an arbitrary number of inputs. This section describes a set
of multi-way gates that will be used subsequently in various chips in our computer
architecture. Similar generalizations can be developed for other architectures, as
needed.

Multi-Way Or An n-way Or gate outputs 1 when at least one of its n bit inputs is 1,
and 0 otherwise. Here is the 8-way variant of this gate:

Multi-Way/ Multi-Bit Multiplexor An m-way n-bit multiplexor selects one of m n-
bit input buses and outputs it to a single n-bit output bus. The selection is speci-
fied by a set of k control bits, where k =log,m. Figure 1.10 depicts a typical
example.

The computer platform that we develop in this book requires two variations of this
chip: A 4-way 16-bit multiplexor and an 8-way 16-bit multiplexor:
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sel[l] sel[0] ” a—»
b —»
0 a . out
0 1 b
1 0 c d —» a,b,c,d and
out are each
1 1 d 16-bit wide

sel[1] sel[0]

Figure 1.10 4-way multiplexor. The width of the input and output buses may vary.

Multi-Way/Multi-Bit Demultiplexor An m-way n-bit demultiplexor (figure 1.11)
channels a single n-bit input into one of m possible n-bit outputs. The selection is
specified by a set of k control bits, where k = log, m.

The specific computer platform that we will build requires two variations of this
chip: A 4-way 1-bit demultiplexor and an 8-way 1-bit multiplexor, as follows.
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Figure 1.11 4-way demultiplexor.

1.3 Implementation

Similar to the role of axioms in mathematics, primitive gates provide a set of ele-
mentary building blocks from which everything else can be built. Operationally,
primitive gates have an “off-the-shelf”” implementation that is supplied externally.
Thus, they can be used in the construction of other gates and chips without worrying
about their internal design. In the computer architecture that we are now beginning
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to build, we have chosen to base all the hardware on one primitive gate only: Nand.
We now turn to outlining the first stage of this bottom-up hardware construction
project, one gate at a time.

Our implementation guidelines are intentionally partial, since we want you to dis-
cover the actual gate architectures yourself. We reiterate that each gate can be imple-
mented in more than one way; the simpler the implementation, the better.

Not: The implementation of a unary Not gate from a binary Nand gate is simple.
Tip: Think positive.

And: Once again, the gate implementation is simple. Tip: Think negative.

Or[Xor: These functions can be defined in terms of some of the Boolean functions
implemented previously, using some simple Boolean manipulations. Thus, the re-
spective gates can be built using previously built gates.

Multiplexor/ Demultiplexor: Likewise, these gates can be built using previously built
gates.

Multi-Bit Not/And/Or Gates: Since we already know how to implement the ele-
mentary versions of these gates, the implementation of their n-ary versions is simply
a matter of constructing arrays of n elementary gates, having each gate operate sep-
arately on its bit inputs. This implementation task is rather boring, but it will carry
its weight when these multi-bit gates are used in more complex chips, as described in
subsequent chapters.

Multi-Bit Multiplexor: The implementation of an n-ary multiplexor is simply a
matter of feeding the same selection bit to every one of n binary multiplexors. Again,

a boring task resulting in a very useful chip.

Multi-Way Gates: Implementation tip: Think forks.

1.4 Perspective

This chapter described the first steps taken in an applied digital design project. In the
next chapter we will build more complicated functionality using the gates built here.
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Although we have chosen to use Nand as our basic building block, other approaches
are possible. For example, one can build a complete computer platform using Nor
gates alone, or, alternatively, a combination of And, Or, and Not gates. These con-
structive approaches to logic design are theoretically equivalent, just as all theorems
in geometry can be founded on different sets of axioms as alternative points of de-
parture. The theory and practice of such constructions are covered in standard text-
books about digital design or logic design.

Throughout the chapter, we paid no attention to efficiency considerations such as
the number of elementary gates used in constructing a composite gate or the number
of wire crossovers implied by the design. Such considerations are critically important
in practice, and a great deal of computer science and electrical engineering expertise
focuses on optimizing them. Another issue we did not address at all is the physical
implementation of gates and chips using the laws of physics, for example, the role
of transistors embedded in silicon. There are of course several such implementation
options, each having its own characteristics (speed, power requirements, production
cost, etc.). Any nontrivial coverage of these issues requires some background in
electronics and physics.

1.5 Project

Objective Implement all the logic gates presented in the chapter. The only building
blocks that you can use are primitive Nand gates and the composite gates that you
will gradually build on top of them.

Resources The only tool that you need for this project is the hardware simulator
supplied with the book. All the chips should be implemented in the HDL language
specified in appendix A. For each one of the chips mentioned in the chapter, we
provide a skeletal .hdl program (text file) with a missing implementation part. In
addition, for each chip we provide a .tst script file that tells the hardware simulator
how to test it, along with the correct output file that this script should generate,
called .cmp or “compare file.” Your job is to complete the missing implementation
parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modified
.hd1 program), tested on the supplied .tst file, should produce the outputs listed in
the supplied .cmp file. If that is not the case, the simulator will let you know.
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Tips The Nand gate is considered primitive and thus there is no need to build it:
Whenever you use Nand in one of your HDL programs, the simulator will auto-
matically invoke its built-in tools/builtIn/Nand.hdl implementation. We rec-
ommend implementing the other gates in this project in the order in which they
appear in the chapter. However, since the builtIn directory features working ver-
sions of all the chips described in the book, you can always use these chips without
defining them first: The simulator will automatically use their built-in versions.

For example, consider the skeletal Mux.hdl program supplied in this project.
Suppose that for one reason or another you did not complete this program’s im-
plementation, but you still want to use Mux gates as internal parts in other chip
designs. This is not a problem, thanks to the following convention. If our simula-
tor fails to find a Mux.hdl file in the current directory, it automatically invokes a
built-in Mux implementation, pre-supplied with the simulator’s software. This built-
in implementation—a Java class stored in the builtIn directory—has the same in-
terface and functionality as those of the Mux gate described in the book. Thus, if you
want the simulator to ignore one or more of your chip implementations, simply move
the corresponding .hd1 files out of the current directory.

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-
tory of the book’s software suite.

1. Read appendix A, sections A1-A6 only.

2. Go through the hardware simulator tutorial, parts I, 11, and III only.

3. Build and simulate all the chips specified in the projects/01 directory.
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Counting is the religion of this generation, its hope and salvation.
—Gertrude Stein (1874-1946)

In this chapter we build gate logic designs that represent numbers and perform
arithmetic operations on them. Our starting point is the set of logic gates built in
chapter 1, and our ending point is a fully functional Arithmetic Logical Unit. The
ALU is the centerpiece chip that executes all the arithmetic and logical operations
performed by the computer. Hence, building the ALU functionality is an important
step toward understanding how the Central Processing Unit (CPU) and the overall
computer work.

As usual, we approach this task gradually. The first section gives a brief Back-
ground on how binary codes and Boolean arithmetic can be used, respectively, to
represent and add signed numbers. The Specification section describes a succession of
adder chips, designed to add two bits, three bits, and pairs of n-bit binary numbers.
This sets the stage for the ALU specification, which is based on a sophisticated yet
simple logic design. The Implementation and Project sections provide tips and
guidelines on how to build the adder chips and the ALU on a personal computer,
using the hardware simulator supplied with the book.

Binary addition is a simple operation that runs deep. Remarkably, most of the
operations performed by digital computers can be reduced to elementary additions of
binary numbers. Therefore, constructive understanding of binary addition holds the
key to the implementation of numerous computer operations that depend on it, one
way or another.
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2.1 Background

Binary Numbers Unlike the decimal system, which is founded on base 10, the bi-
nary system is founded on base 2. When we are given a certain binary pattern, say
“10011,” and we are told that this pattern is supposed to represent an integer num-
ber, the decimal value of this number is computed by convention as follows:

(10011),, =1-2*4+0-23+0-22+1-2" +1-2°=19 (1)

two

In general, let x = x,,x,_1 ... X be a string of digits. The value of x in base b, denoted
(x),, is defined as follows:

(XnXp—1...X0), = Zx,- b (2)
i=0

The reader can verify that in the case of (10011),,,, rule (2) reduces to calculation (1).

The result of calculation (1) happens to be 19. Thus, when we press the keyboard
keys labeled ‘1°, ‘9’ and ENTER while running, say, a spreadsheet program, what ends
up in some register in the computer’s memory is the binary code 10011. More pre-
cisely, if the computer happens to be a 32-bit machine, what gets stored in the regis-
ter is the bit pattern 00000000000000000000000000010011.

Binary Addition A pair of binary numbers can be added digit by digit from right to
left, according to the same elementary school method used in decimal addition. First,
we add the two right-most digits, also called the least significant bits (LSB) of the two
binary numbers. Next, we add the resulting carry bit (which is either 0 or 1) to the
sum of the next pair of bits up the significance ladder. We continue the process until
the two most significant bits (MSB) are added. If the last bit-wise addition generates a
carry of 1, we can report overflow; otherwise, the addition completes successfully:

0 0 0 1 (carry) 1 1 11

1 0 01 X 1 011
+0 1 01 v +0 111
01 110 x+y 1 001 0
no overflow overflow

We see that computer hardware for binary addition of two n-bit numbers can be built
from logic gates designed to calculate the sum of three bits (pair of bits plus carry bit).
The transfer of the resulting carry bit forward to the addition of the next significant
pair of bits can be easily accomplished by proper wiring of the 3-bit adder gates.
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Signed Binary Numbers A binary system with » digits can generate a set of 2" dif-
ferent bit patterns. If we have to represent signed numbers in binary code, a natural
solution is to split this space into two equal subsets. One subset of codes is assigned
to represent positive numbers, and the other negative numbers. Ideally, the coding
scheme should be chosen in such a way that the introduction of signed numbers
would complicate the hardware implementation as little as possible.

This challenge has led to the development of several coding schemes for repre-
senting signed numbers in binary code. The method used today by almost all com-
puters is called the 2’s complement method, also known as radix complement. In a
binary system with n digits, the 2’s complement of the number x is defined as follows:

)_C:{Z —x if x#0

0 otherwise

For example, in a 5-bit binary system, the 2’s complement representation of —2
or “minus(00010),,,” is 2° — (00010),,, = (32),,, — (2),., = (30),,,, = (11110),,,. To
check the calculation, the reader can verify that (00010),,,, + (11110),,, = (00000),,,.
Note that in the latter computation, the sum is actually (100000),, , but since we are
dealing with a 5-bit binary system, the left-most sixth bit is simply ignored. As a rule,
when the 2’s complement method is applied to n-bit numbers, x 4+ (—x) always sums
up to 2" (i.e., 1 followed by n 0’s)—a property that gives the method its name. Figure
2.1 illustrates a 4-bit binary system with the 2’s complement method.

An inspection of figure 2.1 suggests that an n-bit binary system with 2’s comple-
ment representation has the following properties:

Positive Negative
numbers numbers
0 0000
1 0001 1111 -1
2 0010 1110 -2
3 0011 1101 -3
4 0100 1100 —4
5 0101 1011 -5
6 0110 1010 -6
7 0111 1001 -7
1000 -8

Figure 2.1 2’s complement representation of signed numbers in a 4-bit binary system.
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®  The system can code a total of 2” signed numbers, of which the maximal and
minimal numbers are 2”~! — 1 and —2""!, respectively.

®  The codes of all positive numbers begin with a 0.
®  The codes of all negative numbers begin with a 1.

®  To obtain the code of —x from the code of x, leave all the trailing (least signifi-
cant) 0’s and the first least significant 1 intact, then flip all the remaining bits (convert
0’s to 1’s and vice versa). An equivalent shortcut, which is easier to implement in
hardware, is to flip all the bits of x and add 1 to the result.

A particularly attractive feature of this representation is that addition of any two
signed numbers in 2’s complement is exactly the same as addition of positive num-
bers. Consider, for example, the addition operation (—2) + (—3). Using 2’s comple-
ment (in a 4-bit representation), we have to add, in binary, (1110),,, + (1101),,,.
Without paying any attention to which numbers (positive or negative) these codes
represent, bit-wise addition will yield 1011 (after throwing away the overflow bit). As
figure 2.1 shows, this indeed is the 2’s complement representation of —5.

In short, we see that the 2’s complement method facilitates the addition of any
two signed numbers without requiring special hardware beyond that needed for sim-
ple bit-wise addition. What about subtraction? Recall that in the 2’s complement
method, the arithmetic negation of a signed number x, that is, computing —x, is
achieved by negating all the bits of x and adding 1 to the result. Thus subtraction can
be easily handled by x — y = x + (—y). Once again, hardware complexity is kept to
a minimum.

The material implications of these theoretical results are significant. Basically, they
imply that a single chip, called Arithmetic Logical Unit, can be used to encapsulate
all the basic arithmetic and logical operators performed in hardware. We now turn to
specify one such ALU, beginning with the specification of an adder chip.

2.2 Specification

2.2.1 Adders

We present a hierarchy of three adders, leading to a multi-bit adder chip:

®  Half-adder: designed to add two bits
®  Full-adder: designed to add three bits
B Adder: designed to add two n-bit numbers



Boolean Arithmetic

Inputs Outputs
a b carry sum
a—» — sum
0 0 0 0 Half
0 1 0 1 b Adder carry
1 0 0 1
1 1 1 0

Chip name: HalfAdder

Inputs: a, b
Outputs: sum, carry
Function: sum = LSB of a + b

carry = MSB of a + b

Figure 2.2 Half-adder, designed to add 2 bits.

We also present a special-purpose adder, called incrementer, designed to add 1 to a
given number.

Half-Adder The first step on our way to adding binary numbers is to be able to add
two bits. Let us call the least significant bit of the addition sum, and the most signif-
icant bit carry. Figure 2.2 presents a chip, called half-adder, designed to carry out
this operation.

Full-Adder Now that we know how to add two bits, figure 2.3 presents a full-adder
chip, designed to add three bits. Like the half-adder case, the full-adder chip pro-
duces two outputs: the least significant bit of the addition, and the carry bit.

Adder Memory and register chips represent integer numbers by n-bit patterns,
n being 16, 32, 64, and so forth—depending on the computer platform. The chip
whose job is to add such numbers is called a multi-bit adder, or simply adder. Figure
2.4 presents a 16-bit adder, noting that the same logic and specifications scale up as is
to any n-bit adder.

Incrementer It is convenient to have a special-purpose chip dedicated to adding the
constant 1 to a given number. Here is the specification of a 16-bit incrementer:
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a b c carry sum
0 0 O 0 0
0 0 1 0 1
0 1 0 0 1 sum
0o 1 1 1 0 carry
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 2.3 Full-adder, designed to add 3 bits.

... 1 01 1 a
... 0 01 0D

... 1 1 0 1 out

Figure 2.4 16-bit adder. Addition of two n-bit binary numbers for any n is “more of the
same.”
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Chip name: Inclé6

Inputs: in[16]

Outputs: out[1l6]

Function: out=in+l

Comment : Integer 2’'s complement addition.
Overflow is neither detected nor handled.

2.2.2 The Arithmetic Logic Unit (ALU)

The specifications of the adder chips presented so far were generic, meaning that they
hold for any computer. In contrast, this section describes an ALU that will later be-
come the centerpiece of a specific computer platform called Hack. At the same time,
the principles underlying the design of our ALU are rather general. Further, our
ALU architecture achieves a great deal of functionality using a minimal set of inter-
nal parts. In that respect, it provides a good example of an efficient and elegant logic
design.

The Hack ALU computes a fixed set of functions out = f;(x, y) where x and y are
the chip’s two 16-bit inputs, out is the chip’s 16-bit output, and f; is an arithmetic
or logical function selected from a fixed repertoire of eighteen possible functions. We
instruct the ALU which function to compute by setting six input bits, called control
bits, to selected binary values. The exact input-output specification is given in figure
2.5, using pseudo-code.

Note that each one of the six control bits instructs the ALU to carry out a certain
elementary operation. Taken together, the combined effects of these operations cause
the ALU to compute a variety of useful functions. Since the overall operation is
driven by six control bits, the ALU can potentially compute 2¢ = 64 different func-
tions. Eighteen of these functions are documented in figure 2.6.

We see that programming our ALU to compute a certain function f(x, y) is done
by setting the six control bits to the code of the desired function. From this point on,
the internal ALU logic specified in figure 2.5 should cause the ALU to output the
value f(x, y) specified in figure 2.6. Of course, this does not happen miraculously, it’s
the result of careful design.

For example, let us consider the twelfth row of figure 2.6, where the ALU is
instructed to compute the function x-1. The zx and nx bits are 0, so the x input
is neither zeroed nor negated. The zy and ny bits are 1, so the y input is first
zeroed, and then negated bit-wise. Bit-wise negation of zero, (000...00),,,, gives
(I11...11),,, the 2’s complement code of —1. Thus the ALU inputs end up being x

two>
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out

Figure 2.5 The Arithmetic Logic Unit.
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These bits instruct
how to preset
the x input

These bits instruct
how to preset
the y input

This bit selects
between
+ / And

This bit inst.
how to
postset out

Resulting
ALU
output
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else
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Figure 2.6 The ALU truth table. Taken together, the binary operations coded by the first six
columns effect the function listed in the right column (we use the symbols !, &, and | to rep-
resent the operators Not, And, and Or, respectively, performed bit-wise). The complete ALU
truth table consists of sixty-four rows, of which only the eighteen presented here are of interest.

and —1. Since the £-bit is 1, the selected operation is arithmetic addition, causing the
ALU to calculate x+(-1). Finally, since the no bit is 0, the output is not negated
but rather left as is. To conclude, the ALU ends up computing x-1, which was
our goal.

Does the ALU logic described in figure 2.6 compute every one of the other seven-
teen functions listed in the figure’s right column? To verify that this is indeed the
case, the reader can pick up some other rows in the table and prove their respec-
tive ALU operation. We note that some of these computations, beginning with the
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function f(x, y) = 1, are not trivial. We also note that there are some other useful
functions computed by the ALU but not listed in the figure.

It may be instructive to describe the thought process that led to the design of this
particular ALU. First, we made a list of all the primitive operations that we wanted
our computer to be able to perform (right column in figure 2.6). Next, we used
backward reasoning to figure out how x, y, and out can be manipulated in binary
fashion in order to carry out the desired operations. These processing requirements,
along with our objective to keep the ALU logic as simple as possible, have led to the
design decision to use six control bits, each associated with a straightforward binary
operation. The resulting ALU is simple and elegant. And in the hardware business,
simplicity and elegance imply inexpensive and powerful computer systems.

2.3 Implementation

Our implementation guidelines are intentionally partial, since we want you to dis-
cover the actual chip architectures yourself. As usual, each chip can be implemented
in more than one way; the simpler the implementation, the better.

Half-Adder An inspection of figure 2.2 reveals that the functions sum(a,b) and
carry(a, b) happen to be identical to the standard Xor(a,b) and And(a,b) Boolean
functions. Thus, the implementation of this adder is straightforward, using pre-
viously built gates.

Full-Adder A full adder chip can be implemented from two half adder chips and
one additional simple gate. A direct implementation is also possible, without using
half-adder chips.

Adder The addition of two signed numbers represented by the 2’s complement
method as two n-bit buses can be done bit-wise, from right to left, in n steps. In step
0, the least significant pair of bits is added, and the carry bit is fed into the addition
of the next significant pair of bits. The process continues until in step n — 1 the most
significant pair of bits is added. Note that each step involves the addition of three
bits. Hence, an n-bit adder can be implemented by creating an array of » full-adder
chips and propagating the carry bits up the significance ladder.

Incrementer An n-bit incrementer can be implemented trivially from an »-bit adder.
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ALU Note that our ALU was carefully planned to effect all the desired ALU
operations logically, using simple Boolean operations. Therefore, the physical imple-
mentation of the ALU is reduced to implementing these simple Boolean operations,
following their pseudo-code specifications. Your first step will likely be to create a
logic circuit that manipulates a 16-bit input according to the nx and zx control bits
(i.e., the circuit should conditionally zero and negate the 16-bit input). This logic can
be used to manipulate the x and y inputs, as well as the out output. Chips for bit-
wise And-ing and addition have already been built in this and in the previous chap-
ter. Thus, what remains is to build logic that chooses between them according to the
£ control bit. Finally, you will need to build logic that integrates all the other chips
into the overall ALU. (When we say “build logic,” we mean “write HDL code”).

2.4 Perspective

The construction of the multi-bit adder presented in this chapter was standard,
although no attention was paid to efficiency. In fact, our suggested adder implemen-
tation is rather inefficient, due to the long delays incurred while the carry bit prop-
agates from the least significant bit pair to the most significant bit pair. This problem
can be alleviated using logic circuits that effect so-called carry look-ahead techniques.
Since addition is one of the most prevalent operations in any given hardware plat-
form, any such low-level improvement can result in dramatic and global perfor-
mance gains throughout the computer.

In any given computer, the overall functionality of the hardware/software plat-
form is delivered jointly by the ALU and the operating system that runs on top of it.
Thus, when designing a new computer system, the question of how much function-
ality the ALU should deliver is essentially a cost/performance issue. The general rule
is that hardware implementations of arithmetic and logical operations are usually
more costly, but achieve better performance. The design trade-off that we have
chosen in this book is to specify an ALU hardware with a limited functionality and
then implement as many operations as possible in software. For example, our ALU
features neither multiplication nor division nor floating point arithmetic. We will
implement some of these operations (as well as more mathematical functions) at the
operating system level, described in chapter 12.

Detailed treatments of Boolean arithmetic and ALU design can be found in most
computer architecture textbooks.
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2.5 Project

Objective Implement all the chips presented in this chapter. The only building
blocks that you can use are the chips that you will gradually build and the chips
described in the previous chapter.

Tip When your HDL programs invoke chips that you may have built in the previ-
ous project, we recommend that you use the built-in versions of these chips instead.
This will ensure correctness and speed up the operation of the hardware simulator.
There is a simple way to accomplish this convention: Make sure that your project
directory includes only the .hd1 files that belong to the present project.

The remaining instructions for this project are identical to those of the project
from the previous chapter, except that the last step should be replaced with “Build
and simulate all the chips specified in the projects/02 directory.”
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It’s a poor sort of memory that only works backward.
—Lewis Carroll (1832-1898)

All the Boolean and arithmetic chips that we built in chapters 1 and 2 were combi-
national. Combinational chips compute functions that depend solely on combinations
of their input values. These relatively simple chips provide many important process-
ing functions (like the ALU), but they cannot maintain state. Since computers must
be able to not only compute values but also store and recall values, they must be
equipped with memory elements that can preserve data over time. These memory
elements are built from sequential chips.

The implementation of memory elements is an intricate art involving synchroni-
zation, clocking, and feedback loops. Conveniently, most of this complexity can be
embedded in the operating logic of very low-level sequential gates called flip-flops.
Using these flip-flops as elementary building blocks, we will specify and build all
the memory devices employed by typical modern computers, from binary cells to
registers to memory banks and counters. This effort will complete the construction of
the chip set needed to build an entire computer—a challenge that we take up in the
chapter 5.

Following a brief overview of clocks and flip-flops, the Background section intro-
duces all the memory chips that we will build on top of them. The next two sec-
tions describe the chips Specification and Implementation, respectively. As usual, all
the chips mentioned in the chapter can be built and tested using the hardware simu-
lator supplied with the book, following the instructions given in the final Project
section.
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3.1 Background

The act of “remembering something’ is inherently time-dependent: You remember
now what has been committed to memory before. Thus, in order to build chips that
“remember’” information, we must first develop some standard means for represent-
ing the progression of time.

The Clock In most computers, the passage of time is represented by a master clock
that delivers a continuous train of alternating signals. The exact hardware imple-
mentation is usually based on an oscillator that alternates continuously between two
phases labeled 0-1, low-high, tick-tock, etc. The elapsed time between the beginning
of a “tick” and the end of the subsequent “tock” is called cycle, and each clock cycle
is taken to model one discrete time unit. The current clock phase (fick or tock) is
represented by a binary signal. Using the hardware’s circuitry, this signal is simulta-
neously broadcast to every sequential chip throughout the computer platform.

Flip-Flops The most elementary sequential element in the computer is a device
called a flip-flop, of which there are several variants. In this book we use a variant
called a data flip-flop, or DFF, whose interface consists of a single-bit data input
and a single-bit data output. In addition, the DFF has a clock input that con-
tinuously changes according to the master clock’s signal. Taken together, the data
and the clock inputs enable the DFF to implement the time-based behavior out(t) =
in(t — 1), where in and out are the gate’s input and output values and ¢ is the current
clock cycle. In other words, the DFF simply outputs the input value from the previ-
ous time unit.

As we now show, this elementary behavior can form the basis of all the hardware
devices that computers use to maintain state, from binary cells to registers to arbi-
trarily large random access memory (RAM) units.

Registers A register is a storage device that can “‘store,” or “remember,” a value
over time, implementing the classical storage behavior out(t) = out(t — 1). A DFF,
on the other hand, can only output its previous input, namely, out(¢) = in(t — 1).
This suggests that a register can be implemented from a DFF by simply feeding the
output of the latter back into its input, creating the device shown in the middle of
figure 3.1. Presumably, the output of this device at any time ¢ will echo its output at
time ¢ — 1, yielding the classical function expected from a storage unit.
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in out
—>

out(t) = in(t-1)

Flip-flop

Sequential Logic

load

in out out

DFF —» ﬁ» DFF T

out(t) = out(t-1) ? if load(t—1) then out(t) = in(t-1)
out(t) = in(t-1) ? else out(t) = out(t-1)
Invalid design 1-bit register (Bit)

Figure 3.1 From a DFF to a single-bit register. The small triangle represents the clock input.
This icon is used to state that the marked chip, as well as the overall chip that encapsulates it,
is time-dependent.

Well, not so. The device shown in the middle of figure 3.1 is invalid. First, it is not
clear how we’ll ever be able to load this device with a new data value, since there are
no means to tell the DFF when to draw its input from the in wire and when from the
out wire. More generally, the rules of chip design dictate that internal pins must
have a fan-in of 1, meaning that they can be fed from a single source only.

The good thing about this thought experiment is that it leads us to the correct and
elegant solution shown in the right side of figure 3.1. In particular, a natural way to
resolve our input ambiguity is to introduce a multiplexor into the design. Further, the
“select bit” of this multiplexor can become the “load bit” of the overall register chip:
If we want the register to start storing a new value, we can put this value in the in
input and set the load bit to 1; if we want the register to keep storing its internal
value until further notice, we can set the 1oad bit to 0.

Once we have developed the basic mechanism for remembering a single bit over
time, we can easily construct arbitrarily wide registers. This can be achieved by
forming an array of as many single-bit registers as needed, creating a register that
holds multi-bit values (figure 3.2). The basic design parameter of such a register is its
width—the number of bits that it holds—e.g., 16, 32, or 64. The multi-bit contents of
such registers are typically referred to as words.

Memories Once we have the basic ability to represent words, we can proceed to
build memory banks of arbitrary length. As figure 3.3 shows, this can be done by
stacking together many registers to form a Random Access Memory RAM unit. The
term random access memory derives from the requirement that read/write operations
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load load

v l
in—» Bit —» out in #’"'%Olﬁ

w
if load(t—1) then out(t) = in(t-1) if load(t-1) then out(t) = in(t-1)
else out(t) = out(t—1) else out(t) = out(t-1)

Binary cell (Bit) w-bit register

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the “="" assignments are single-bit and multi-bit, respectively.

load
Register 0
Register 1
Register 2
in . out
4> . |
(word) . (word)
Register n—1 ‘
RAMnN T
address '
direct access logic
(0 to n—1)

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.
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on a RAM should be able to access randomly chosen words, with no restrictions on
the order in which they are accessed. That is to say, we require that any word in the
memory—irrespective of its physical location—be accessed directly, in equal speed.

This requirement can be satisfied as follows. First, we assign each word in the »n-
register RAM a unique address (an integer between 0 to n — 1), according to which
it will be accessed. Second, in addition to building an array of n registers, we build a
gate logic design that, given an address j, is capable of selecting the individual reg-
ister whose address is j. Note however that the notion of an “address’ is not an ex-
plicit part of the RAM design, since the registers are not “marked” with addresses in
any physical sense. Rather, as we will see later, the chip is equipped with direct access
logic that implements the notion of addressing using logical means.

In sum, a classical RAM device accepts three inputs: a data input, an address in-
put, and a load bit. The address specifies which RAM register should be accessed in
the current time unit. In the case of a read operation (load=0), the RAM’s output
immediately emits the value of the selected register. In the case of a write operation
(Load=1), the selected memory register commits to the input value in the next time
unit, at which point the RAM’s output will start emitting it.

The basic design parameters of a RAM device are its data width—the width of
each one of its words, and its size—the number of words in the RAM. Modern
computers typically employ 32- or 64-bit-wide RAMs whose sizes are up to hundreds
of millions.

Counters A counter is a sequential chip whose state is an integer number that
increments every time unit, effecting the function out(t) = out(t — 1) + ¢, where c is
typically 1. Counters play an important role in digital architectures. For example, a
typical CPU includes a program counter whose output is interpreted as the address of
the instruction that should be executed next in the current program.

A counter chip can be implemented by combining the input/output logic of a
standard register with the combinatorial logic for adding a constant. Typically, the
counter will have to be equipped with some additional functionality, such as possi-
bilities for resetting the count to zero, loading a new counting base, or decrementing
instead of incrementing.

Time Matters All the chips described so far in this chapter are sequential. Simply
stated, a sequential chip is a chip that embeds one or more DFF gates, either directly
or indirectly. Functionally speaking, the DFF gates endow sequential chips with
the ability to either maintain state (as in memory units) or operate on state (as in
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Combinational chip Sequential chip
(optional)  time delay (optional)
in N comb. U aout  in comb. ., DFF | comp. | out
logic F logic gate(s) logic
out = some function of (in) out(t) = some function of (in(t—1), out(t—1))

Figure 3.4 Combinational versus sequential logic (in and out stand for one or more input
and output variables). Sequential chips always consist of a layer of DFFs sandwiched between
optional combinational logic layers.

counters). Technically speaking, this is done by forming feedback loops inside the
sequential chip (see figure 3.4). In combinational chips, where time is neither mod-
eled nor recognized, the introduction of feedback loops is problematic: The output
would depend on the input, which itself would depend on the output, and thus the
output would depend on itself. On the other hand, there is no difficulty in feeding the
output of a sequential chip back into itself, since the DFFs introduce an inherent
time delay: The output at time ¢ does not depend on itself, but rather on the output at
time ¢ — 1. This property guards against the uncontrolled “data races” that would
occur in combinational chips with feedback loops.

Recall that the outputs of combinational chips change when their inputs change,
irrespective of time. In contrast, the inclusion of the DFFs in the sequential archi-
tecture ensures that their outputs change only at the point of transition from one
clock cycle to the next, and not within the cycle itself. In fact, we allow sequential
chips to be in unstable states during clock cycles, requiring only that at the beginning
of the next cycle they output correct values.

This “discretization” of the sequential chips’ outputs has an important side effect:
It can be used to synchronize the overall computer architecture. To illustrate, sup-
pose we instruct the arithmetic logic unit (ALU) to compute x + y where x is the
value of a nearby register and y is the value of a remote RAM register. Because of
various physical constraints (distance, resistance, interference, random noise, etc.) the
electric signals representing x and y will likely arrive at the ALU at different times.
However, being a combinational chip, the ALU is insensitive to the concept of time—
it continuously adds up whichever data values happen to lodge in its inputs. Thus, it
will take some time before the ALU’s output stabilizes to the correct x + y result.
Until then, the ALU will generate garbage.
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How can we overcome this difficulty? Well, since the output of the ALU is always
routed to some sort of a sequential chip (a register, a RAM location, etc.), we don’t
really care. All we have to do is ensure, when we build the computer’s clock, that
the length of the clock cycle will be slightly longer that the time it takes a bit to travel
the longest distance from one chip in the architecture to another. This way, we are
guaranteed that by the time the sequential chip updates its state (at the beginning of
the next clock cycle), the inputs that it receives from the ALU will be valid. This, in a
nutshell, is the trick that synchronizes a set of stand-alone hardware components into
a well-coordinated system, as we shall see in chapter 5.

3.2 Specification

This section specifies a hierarchy of sequential chips:

m  Data-flip-flops (DFFs)
m  Registers (based on DFFs)
= Memory banks (based on registers)

m  Counter chips (also based on registers)
3.2.1 Data-Flip-Flop
The most elementary sequential device that we present—the basic component from

which all memory elements will be designed—is the data flip-flop gate. A DFF gate
has a single-bit input and a single-bit output, as follows:

Chip name: DFF

Inputs: in
Outputs: out
in—» DFF |— out Function: out(t)=in(t-1)
Comment : This clocked gate has a built-in

implementation and thus there is
no need to implement it.

Like Nand gates, DFF gates enter our computer archtecture at a very low
level. Specifically, all the sequential chips in the computer (registers, memory, and
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counters) are based on numerous DFF gates. All these DFFs are connected to the
same master clock, forming a huge distributed “chorus line.” At the beginning of
each clock cycle, the outputs of all the DFFs in the computer commit to their
inputs during the previous time unit. At all other times, the DFFs are “latched,”
meaning that changes in their inputs have no immediate effect on their outputs.
This conduction operation effects any one of the millions of DFF gates that make
up the system, about a billion times per second (depending on the computer’s clock
frequency).

Hardware implementations achieve this time dependency by simultaneously feed-
ing the master clock signal to all the DFF gates in the platform. Hardware simu-
lators emulate the same effect in software. As far as the computer architect is
concerned, the end result is the same: The inclusion of a DFF gate in the design of
any chip ensures that the overall chip, as well as all the chips up the hardware hier-
archy that depend on it, will be inherently time-dependent. These chips are called
sequential, by definition.

The physical implementation of a DFF is an intricate task, and is based on
connecting several elementary logic gates using feedback loops (one classic design
is based on Nand gates alone). In this book we have chosen to abstract away this
complexity, treating DFFs as primitive building blocks. Thus, our hardware simu-
lator provides a built-in DFF implementation that can be readily used by other
chips.

3.2.2 Registers

A single-bit register, which we call Bit, or binary cell, is designed to store a single bit
of information (0 or 1). The chip interface consists of an input pin that carries a data
bit, a 1load pin that enables the cell for writes, and an output pin that emits the cur-
rent state of the cell. The interface diagram and API of a binary cell are as follows:

Chip name: Bit
load
¢ Outputs: out
in—»  Bit —out Function: If load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Inputs: in, load

The API of the Register chip is essentially the same, except that the input and output
pins are designed to handle multi-bit values:
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load

|

w bits

Register —<— out

w bits

A

The Bit and Register chips have exactly the same read/write behavior:

Read: To read the contents of a register, we simply probe its output.

Write:  To write a new data value d into a register, we put d in the in input and
assert (set to 1) the load input. In the next clock cycle, the register commits to the
new data value, and its output starts emitting d.

3.2.3 Memory

A direct-access memory unit, also called RAM, is an array of n w-bit registers,
equipped with direct access circuitry. The number of registers (n) and the width of
each register (w) are called the memory’s size and width, respectively. We will now set
out to build a hierarchy of such memory devices, all 16 bits wide, but with varying sizes:
RAMS, RAM64, RAMS12, RAM4K, and RAM16K units. All these memory chips
have precisely the same API, and thus we describe them in one parametric diagram:

load

in

}

16 bits

address

}

log,n
bits

out

RAMh —~»
16 bits
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Read: To read the contents of register number m, we put m in the address input.
The RAM’s direct-access logic will select register number m2, which will then emit its
output value to the RAM’s output pin. This is a combinational operation, indepen-
dent of the clock.

Write: To write a new data value d into register number m, we put m in the
address input, d in the in input, and assert the load input bit. This causes the
RAM’s direct-access logic to select register number m, and the load bit to enable it.
In the next clock cycle, the selected register will commit to the new value (), and the
RAM’s output will start emitting it.

3.2.4 Counter

Although a counter is a stand-alone abstraction in its own right, it is convenient
to motivate its specification by saying a few words about the context in which it is
normally used. For example, consider a counter chip designed to contain the address
of the instruction that the computer should fetch and execute next. In most cases,
the counter has to simply increment itself by 1 in each clock cycle, thus causing the
computer to fetch the next instruction in the program. In other cases, for example, in
“jump to execute instruction number n,”” we want to be able to set the counter to 7,
then have it continue its default counting behavior with n+ 1, n 4+ 2, and so forth.
Finally, the program’s execution can be restarted anytime by resetting the counter to
0, assuming that that’s the address of the program’s first instruction. In short, we
need a loadable and resettable counter.

With that in mind, the interface of our Counter chip is similar to that of a register,
except that it has two additional control bits labeled reset and inc. When inc=1,
the counter increments its state in every clock cycle, emitting the value out(t)=
out (t-1)+1. If we want to reset the counter to 0, we assert the reset bit; if we want
to initialize it to some other counting base d, we put d in the in input and assert the
load bit. The details are given in the counter API, and an example of its operation is
depicted in figure 3.5.

3.3 Implementation

Flip-Flop DFF gates can be implemented from lower-level logic gates like those
built in chapter 1. However, in this book we treat DFFs as primitive gates, and thus
they can be used in hardware construction projects without worrying about their
internal implementation.
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We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively. We also assume that the
counter’s control bits (reset, load, inc) start at 0—all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.
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1-Bit Register (Bit) The implementation of this chip was given in figure 3.1.

Register The construction of a w-bit Register chip from 1-bit registers is straight-
forward. All we have to do is construct an array of w Bit gates and feed the register’s
load input to every one of them.

8-Register Memory (RAMS8) An inspection of figure 3.3 may be useful here. To
implement a RAMS chip, we line up an array of eight registers. Next, we have to
build combinational logic that, given a certain address value, takes the RAMS’s
in input and loads it into the selected register. In a similar fashion, we have to build
combinational logic that, given a certain address value, selects the right register and
pipes its out value to the RAMS&’s out output. Tip: This combinational logic was
already implemented in chapter 1.

n-Register Memory A memory bank of arbitrary length (a power of 2) can be built
recursively from smaller memory units, all the way down to the single register level.
This view is depicted in figure 3.6. Focusing on the right-hand side of the figure, we
note that a 64-register RAM can be built from an array of eight 8-register RAM
chips. To select a particular register from the RAM64 memory, we use a 6-bit
address, say xxxyyy. The MSB xxx bits select one of the RAMS chips, and the
LSB yyy bits select one of the registers within the selected RAMS8. The RAM64
chip should be equipped with logic circuits that effect this hierarchical addressing
scheme.

Counter A w-bit counter consists of two main elements: a regular w-bit register, and
combinational logic. The combinational logic is designed to (a) compute the count-
ing function, and (b) put the counter in the right operating mode, as mandated by
the values of its three control bits. Tip: Most of this logic was already built in chap-
ter 2.

3.4 Perspective

The cornerstone of all the memory systems described in this chapter is the flip-flop—
a gate that we treated here as an atomic, or primitive, building block. The usual
approach in hardware textbooks is to construct flip-flops from elementary combina-
torial gates (e.g., Nand gates) using appropriate feedback loops. The standard con-
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Figure 3.6 Gradual construction of memory banks by recursive ascent. A w-bit register is
an array of w binary cells, an 8-register RAM is an array of eight w-bit registers, a 64-register
RAM is an array of eight RAMS chips, and so on. Only three more similar construction steps
are necessary to build a 16K RAM chip.

struction begins by building a simple (non-clocked) flip-flop that is bi-stable, namely,
that can be set to be in one of two states. Then a clocked flip-flop is obtained by
cascading two such simple flip-flops, the first being set when the clock ticks and the
second when the clock focks. This “master-slave” design endows the overall flip-flop
with the desired clocked synchronization functionality.

These constructions are rather elaborate, requiring an understating of delicate
issues like the effect of feedback loops on combinatorial circuits, as well as the im-
plementation of clock cycles using a two-phase binary clock signal. In this book we
have chosen to abstract away these low-level considerations by treating the flip-flop
as an atomic gate. Readers who wish to explore the internal structure of flip-flop
gates can find detailed descriptions in most logic design and computer architecture
textbooks.

In closing, we should mention that memory devices of modern computers are
not always constructed from standard flip-flops. Instead, modern memory chips
are usually very carefully optimized, exploiting the unique physical properties of the
underlying storage technology. Many such alternative technologies are available
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today to computer designers; as usual, which technology to use is a cost-performance
issue.

Aside from these low-level considerations, all the other chip constructions in
this chapter—the registers and memory chips that were built on top of the flip-flop
gates—were standard.

3.5 Project

Objective Build all the chips described in the chapter. The only building blocks that
you can use are primitive DFF gates, chips that you will build on top of them, and
chips described in previous chapters.

Resources The only tool that you need for this project is the hardware simulator
supplied with the book. All the chips should be implemented in the HDL language
specified in appendix A. As usual, for each chip we supply a skeletal .hd1l program
with a missing implementation part, a .tst script file that tells the hardware simu-
lator how to test it, and a .cmp compare file. Your job is to complete the missing
implementation parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modi-
fied .hdl program), tested on the supplied .tst file, should produce the out-
puts listed in the supplied .cmp file. If that is not the case, the simulator will let you
know.

Tip The Data Flip-Flop (DFF) gate is considered primitive and thus there is no
need to build it: When the simulator encounters a DFF gate in an HDL program, it
automatically invokes the built-in tools/builtIn/DFF.hdl implementation.

The Directory Structure of This Project When constructing RAM chips from
smaller ones, we recommend using built-in versions of the latter. Otherwise, the
simulator may run very slowly or even out of (real) memory space, since large RAM
chips contain tens of thousands of lower-level chips, and all these chips are kept in
memory (as software objects) by the simulator. For this reason, we have placed the
RAM512.hd1l, RAM4K.hdl, and RAM16K.hdl programs in a separate directory. This
way, the recursive descent construction of the RAM4K and RAMI16K chips stops
with the RAMS512 chip, whereas the lower-level chips from which the latter chip
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is made are bound to be built-in (since the simulator does not find them in this
directory).

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-
tory of the book’s software suite.

1. Read appendix A, focusing on sections A.6 and A.7.

2. Go through the hardware simulator tutorial, focusing on parts IV and V.

3. Build and simulate all the chips specified in the projects/03 directory.



Machine Language

Make everything as simple as possible, but not simpler.
—Albert Einstein (1879-1955)

A computer can be described constructively, by laying out its hardware platform
and explaining how it is built from low-level chips. A computer can also be described
abstractly, by specifying and demonstrating its machine language capabilities. And
indeed, it is convenient to get acquainted with a new computer system by first seeing
some low-level programs written in its machine language. This helps us understand
not only how to program the computer to do useful things, but also why its hard-
ware was designed in a certain way. With that in mind, this chapter focuses on low-
level programming in machine language. This sets the stage for chapter 5, where we
complete the construction of a general-purpose computer designed to run machine
language programs. This computer will be constructed from the chip set built in
chapters 1-3.

A machine language is an agreed-upon formalism, designed to code low-level
programs as series of machine instructions. Using these instructions, the programmer
can command the processor to perform arithmetic and logic operations, fetch and
store values from and to the memory, move values from one register to another, test
Boolean conditions, and so on. As opposed to high-level languages, whose basic
design goals are generality and power of expression, the goal of machine language’s
design is direct execution in, and total control of, a given hardware platform. Of
course, generality, power, and elegance are still desired, but only to the extent that
they support the basic requirement of direct execution in hardware.

Machine language is the most profound interface in the overall computer
enterprise—the fine line where hardware and software meet. This is the point where
the abstract thoughts of the programmer, as manifested in symbolic instructions, are
turned into physical operations performed in silicon. Thus, machine language can
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be construed as both a programming tool and an integral part of the hardware plat-
form. In fact, just as we say that the machine language is designed to exploit a given
hardware platform, we can say that the hardware platform is designed to fetch, in-
terpret, and execute instructions written in the given machine language.

The chapter begins with a general introduction to machine language program-
ming. Next, we give a detailed specification of the Hack machine language, covering
both its binary and its symbolic assembly versions. The project that ends the chapter
engages you in writing a couple of machine language programs. This project offers
a hands-on appreciation of low-level programming and prepares you for building the
computer itself in the next chapter.

Although most people will never write programs directly in machine language,
the study of low-level programming is a prerequisite to a complete understanding of
computer architectures. Also, it is rather fascinating to realize how the most sophis-
ticated software systems are, at bottom, long series of elementary instructions, each
specifying a very simple and primitive operation on the underlying hardware. As
usual, this understanding is best achieved constructively, by writing some low-level
code and running it directly on the hardware platform.

4.1 Background

This chapter is language-oriented. Therefore, we can abstract away most of the
details of the underlying hardware platform, deferring its description to the next
chapter. Indeed, to give a general description of machine languages, it is sufficient
to focus on three main abstractions only: a processor, a memory, and a set of
registers.

4.1.1 Machines

A machine language can be viewed as an agreed-upon formalism, designed to ma-
nipulate a memory using a processor and a set of registers.

Memory The term memory refers loosely to the collection of hardware devices that
store data and instructions in a computer. From the programmer’s standpoint, all
memories have the same structure: A continuous array of cells of some fixed width,
also called words or locations, each having a unique address. Hence, an individual
word (representing either a data item or an instruction) is specified by supplying its
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address. In what follows we will refer to such individual words using the equivalent
notation Memory[address], RAM[address], or M[address] for brevity.

Processor The processor, normally called Central Processing Unit or CPU, is a
device capable of performing a fixed set of elementary operations. These typically
include arithmetic and logic operations, memory access operations, and control (also
called branching) operations. The operands of these operations are binary values
that come from registers and selected memory locations. Likewise, the results of the
operations (the processor’s output) can be stored either in registers or in selected
memory locations.

Registers Memory access is a relatively slow operation, requiring long instruc-
tion formats (an address may require 32 bits). For this reason, most processors are
equipped with several registers, each capable of holding a single value. Located in the
processor’s immediate proximity, the registers serve as a high-speed local memory,
allowing the processor to manipulate data and instructions quickly. This setting
enables the programmer to minimize the use of memory access commands, thus
speeding up the program’s execution.

4.1.2 Languages

A machine language program is a series of coded instructions. For example, a typical
instruction in a 16-bit computer may be 1010001100011001. In order to figure out
what this instruction means, we have to know the rules of the game, namely, the in-
struction set of the underlying hardware platform. For example, the language may be
such that each instruction consists of four 4-bit fields: The left-most field codes a
CPU operation, and the remaining three fields represent the operation’s operands.
Thus the previous command may code the operation set R3 to RI + R9, depending
of course on the hardware specification and the machine language syntax.

Since binary codes are rather cryptic, machine languages are normally specified
using both binary codes and symbolic mnemonics (a mnemonic is a symbolic label
whose name hints at what it stands for—in our case hardware elements and binary
operations). For example, the language designer can decide that the operation code
1010 will be represented by the mnemonic add and that the registers of the machine
will be symbolically referred to using the symbols R0, R1, R2, and so forth. Using
these conventions, one can specify machine language instructions either directly, as
1010001100011001, or symbolically, as, say, ADD R3,R1,R9.
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Taking this symbolic abstraction one step further, we can allow ourselves not
only to read symbolic notation, but to actually write programs using symbolic com-
mands rather than binary instructions. Next, we can use a text processing program
to parse the symbolic commands into their underlying fields (mnemonics and oper-
ands), translate each field into its equivalent binary representation, and assemble the
resulting codes into binary machine instructions. The symbolic notation is called as-
sembly language, or simply assembly, and the program that translates from assembly
to binary is called assembler.

Since different computers vary in terms of CPU operations, number and type of
registers, and assembly syntax rules, there is a Tower of Babel of machine languages,
each with its own obscure syntax. Yet irrespective of this variety, all machine lan-
guages support similar sets of generic commands, which we now describe.

4.1.3 Commands

Arithmetic and Logic Operations Every computer is required to perform basic
arithmetic operations like addition and subtraction as well as basic Boolean oper-
ations like bit-wise negation, bit shifting, and so forth. Here are some examples,
written in typical machine language syntax:

ADD R2,R1,R3 // R2<-R1+R3 where R1,R2,R3 are registers

ADD R2,R1,foo // R2<-Rl+foo where foo stands for the
// value of the memory location pointed
// at by the user-defined label foo.

AND R1,R1,R2 // Rl<bit wise And of Rl and R2

Memory Access Memory access commands fall into two categories. First, as we
have just seen, arithmetic and logical commands are allowed to operate not only on
registers, but also on selected memory locations. Second, all computers feature ex-
plicit load and store commands, designed to move data between registers and mem-
ory. These memory access commands may use several types of addressing modes—
ways of specifying the address of the required memory word. As usual, different
computers offer different possibilities and different notations, but the following three
memory access modes are almost always supported:

" Direct addressing The most common way to address the memory is to express a
specific address or use a symbol that refers to a specific address, as follows:
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LOAD R1,67 // Rl<—Memory[67]
// Or, assuming that bar refers to memory address 67:
LOAD R1,bar // Rl<-Memory[67]

®  [mmediate addressing This form of addressing is used to load constants—
namely, load values that appear in the instruction code: Instead of treating the nu-
meric field that appears in the instruction as an address, we simply load the value of
the field itself into the register, as follows:

LOADI R1,67 // Rle67

®  Jndirect addressing In this addressing mode the address of the required memory
location is not hard-coded into the instruction; instead, the instruction specifies a
memory location that holds the required address. This addressing mode is used to
handle pointers. For example, consider the high-level command x=foo[3j], where
foo is an array variable and x and j are integer variables. What is the machine lan-
guage equivalent of this command? Well, when the array foo is declared and ini-
tialized in the high-level program, the compiler allocates a memory segment to hold
the array data and makes the symbol foo refer to the base address of that segment.

Now, when the compiler later encounters references to array cells like foo[j], it
translates them as follows. First, note that the jth array entry should be physically
located in a memory location that is at a displacement j from the array’s base ad-
dress (assuming, for simplicity, that each array element uses a single word). Hence
the address corresponding to the expression foo[j] can be easily calculated by add-
ing the value of j to the value of foo. Thus in the C programming language, for ex-
ample, a command like x=foo[j] can be also expressed as x=* (foo+j), where the
notation “*n” stands for “the value of Memory[n]”’. When translated into machine
language, such commands typically generate the following code (depending on the
assembly language syntax):

// Translation of x=foo[j] or x=*(foo+j):
ADD R1,foo,] // Rl<—foo+j

LOAD* R2,R1 // R2<—Memory[R1]

STR R2,x // x<R2

Flow of Control While programs normally execute in a linear fashion, one com-
mand after the other, they also include occasional branches to locations other than
the next command. Branching serves several purposes including repetition (jump
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High-level Low-level
// A while loop: // Typical translation:
while (R1>=0) { beginWhile:
code segment 1 JNG R1l,endWhile // If R1<0 goto endWhile
} // Translation of code segment 1 comes here
code segment 2 JMP beginWhile // Goto beginWhile

endWhile:
// Translation of code segment 2 comes here

Figure 4.1 High- and low-level branching logic. The syntax of goto commands varies from
one language to another, but the basic idea is the same.

backward to the beginning of a loop), conditional execution (if a Boolean condition is
false, jump forward to the location after the “if-then” clause), and subroutine calling
(jump to the first command of some other code segment). In order to support these
programming constructs, every machine language features the means to jump to
selected locations in the program, both conditionally and unconditionally. In assem-
bly languages, locations in the program can also be given symbolic names, using
some syntax for specifying labels. Figure 4.1 illustrates a typical example.

Unconditional jump commands like JMP beginWhile specify only the address of
the target location. Conditional jump commands like JNG R1,endWwhile must also
specify a Boolean condition, expressed in some way. In some languages the condition
is an explicit part of the command, while in others it is a by-product of executing a
previous command.

This ends our informal introduction to machine languages and the generic oper-
ations that they normally support. The next section gives a formal description of one
specific machine language—the native code of the computer that we will build in
chapter 5.

4.2 Hack Machine Language Specification

4.2.1 Overview

The Hack computer is a von Neumann platform. It is a 16-bit machine, consisting
of a CPU, two separate memory modules serving as instruction memory and data
memory, and two memory-mapped I/O devices: a screen and a keyboard.
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Memory Address Spaces The Hack programmer is aware of two distinct address
spaces: an instruction memory and a data memory. Both memories are 16-bit wide
and have a 15-bit address space, meaning that the maximum addressable size of each
memory is 32K 16-bit words.

The CPU can only execute programs that reside in the instruction memory. The
instruction memory is a read-only device, and programs are loaded into it using some
exogenous means. For example, the instruction memory can be implemented in a
ROM chip that is pre-burned with the required program. Loading a new program is
done by replacing the entire ROM chip, similar to replacing a cartridge in a game
console. In order to simulate this operation, hardware simulators of the Hack plat-
form must provide a means to load the instruction memory from a text file contain-
ing a machine language program.

Registers The Hack programmer is aware of two 16-bit registers called D and A.
These registers can be manipulated explicitly by arithmetic and logical instructions
like A=D-1 or D=!A (where “!” means a 16-bit Not operation). While D is used
solely to store data values, A doubles as both a data register and an address register.
That is to say, depending on the instruction context, the contents of A can be inter-
preted either as a data value, or as an address in the data memory, or as an address
in the instruction memory, as we now explain.

First, the A register can be used to facilitate direct access to the data memory
(which, from now on, will be often referred to as “memory”). Since Hack instruc-
tions are 16-bit wide, and since addresses are specified using 15 bits, it is impossible
to pack both an operation code and an address in one instruction. Thus, the syntax
of the Hack language mandates that memory access instructions operate on an
implicit memory location labeled “M”, for example, D=M+1. In order to resolve this
address, the convention is that M always refers to the memory word whose address is
the current value of the A register. For example, if we want to effect the operation
D = Memory[516] — 1, we have to use one instruction to set the A register to 516,
and a subsequent instruction to specify D=M-1.

In addition, the hardworking A register is also used to facilitate direct access to
the instruction memory. Similar to the memory access convention, Hack jump
instructions do not specify a particular address. Instead, the convention is that any
jump operation always effects a jump to the instruction located in the memory word
addressed by A. Thus, if we want to effect the operation goto 35, we use one in-
struction to set A to 35, and a second instruction to code a goto command, without
specifying an address. This sequence causes the computer to fetch the instruction
located in InstructionMemory[35] in the next clock cycle.
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Example Since the Hack language is self-explanatory, we start with an example.
The only non-obvious command in the language is @uvalue, where value is either a
number or a symbol representing a number. This command simply stores the speci-
fied value in the A register. For example, if sum refers to memory location 17, then
both @17 and @sum will have the same effect: A<=17.

And now to the example: Suppose we want to add the integers 1 to 100, using re-
petitive addition. Figure 4.2 gives a C language solution and a possible compilation
into the Hack language.

Although the Hack syntax is more accessible than that of most machine lan-
guages, it may still look obscure to readers who are not familiar with low-level pro-
gramming. In particular, note that every operation involving a memory location
requires two Hack commands: One for selecting the address on which we want to
operate, and one for specifying the desired operation. Indeed, the Hack language
consists of two generic instructions: an address instruction, also called A-instruction,
and a compute instruction, also called C-instruction. Each instruction has a binary
representation, a symbolic representation, and an effect on the computer, as we now
specify.

4.2.2 The A-Instruction

The A-instruction is used to set the A register to a 15-bit value:

A-instruction: @uvalue // Where value is either a non-negative decimal number
// or a symbol referring to such number.

value (v = Oorl)

I |
Binary: 0 v v Vv V V V VvV V V V V V V V V

This instruction causes the computer to store the specified value in the A register. For
example, the instruction @5, which is equivalent to 0000000000000101, causes the
computer to store the binary representation of 5 in the A register.

The A-instruction is used for three different purposes. First, it provides the only
way to enter a constant into the computer under program control. Second, it sets the
stage for a subsequent C-instruction designed to manipulate a certain data memory
location, by first setting A to the address of that location. Third, it sets the stage for
a subsequent C-instruction that specifies a jump, by first loading the address of the
jump destination to the A register. These uses are demonstrated in figure 4.2.
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C language Hack machine language

Figure 4.2 C and assembly versions of the same program. The infinite loop at the program’s
end is our standard way to “terminate” the execution of Hack programs.



66

Chapter 4

4.2.3 The C-Instruction

The C-instruction is the programming workhorse of the Hack platform—the in-
struction that gets almost everything done. The instruction code is a specification
that answers three questions: (a) what to compute, (b) where to store the computed
value, and (c) what to do next? Along with the A-instruction, these specifications
determine all the possible operations of the computer.

C-instruction:  dest=comp,jump // Either the dest or jump fields may be empty.
/] If dest is empty, the “="" is omitted;

[T L)

// If jump is empty, the ““;” is omitted.

colmp delsl julmp
| i [ |

Binary: |1 1 1 a cl c2 c3 c4 c5 c6 dl d2 d3 j1 j2 33

The leftmost bit is the C-instruction code, which is 1. The next two bits are not
used. The remaining bits form three fields that correspond to the three parts of the
instruction’s symbolic representation. The overall semantics of the symbolic instruc-
tion dest = comp,jump is as follows. The comp field instructs the ALU what to com-
pute. The dest field instructs where to store the computed value (ALU output). The
Jjump field specifies a jump condition, namely, which command to fetch and execute
next. We now describe the format and semantics of each of the three fields.

The Computation Specification The Hack ALU is designed to compute a fixed set
of functions on the D, A, and M registers (where M stands for Memory[A]). The
computed function is specified by the a-bit and the six c-bits comprising the instruc-
tion’s comp field. This 7-bit pattern can potentially code 128 different functions, of
which only the 28 listed in figure 4.3 are documented in the language specification.

Recall that the format of the C-instruction is 111a cccc cedd djjj. Suppose we
want to have the ALU compute D-1, the current value of the D register minus 1.
According to figure 4.3, this can be done by issuing the instruction 1110 0011 1000
0000 (the 7-bit operation code is in bold). To compute the value of D|M, we issue the
instruction 1111 0101 0100 0000. To compute the constant —1, we issue the in-
struction 1110 1110 1000 0000, and so on.

The Destination Specification The value computed by the comp part of the C-
instruction can be stored in several destinations, as specified by the instruction’s 3-bit
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(when a=0) (when a=1)
. cl c2 c3 c4 c5 cb .
comp mnemonic comp mnemonic
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A 1 1 0 0 0 0 M
!'D 0 0 1 1 0 1
A 1 1 0 0 0 1 M
-D 0 0 1 1 1 1
-A 1 1 0 0 1 1 -M
D+1 0 1 1 1 1 1
A+l 1 1 0 1 1 1 M+1
D-1 0 0 1 1 1 0
A-1 1 1 0 0 1 0 M-1
D+A 0 0 0 0 1 0 D+M
D-A 0 1 0 0 1 1 D-M
A-D 0 0 0 1 1 1 M-D
D&A 0 0 0 0 0 0 D&M
D|A 0 1 0 1 0 1 D|M

Figure 4.3 The compute field of the C-instruction. D and A are names of registers. M refers to
the memory location addressed by A, namely, to Memory[A]. The symbols + and — denote
16-bit 2’s complement addition and subtraction, while !, |, and & denote the 16-bit bit-wise
Boolean operators Not, Or, and And, respectively. Note the similarity between this instruction
set and the ALU specification given in figure 2.6.

dest part (see figure 4.4). The first and second d-bits code whether to store the com-
puted value in the A register and in the D register, respectively. The third d-bit codes
whether to store the computed value in M (i.e., in Memory[A]). One, more than one,
or none of these bits may be asserted.

Recall that the format of the C-instruction is 11la cccc cedd djjj. Suppose
we want the computer to increment the value of Memory[7] by 1 and to also store the
result in the D register. According to figures 4.3 and 4.4, this can be accomplished by
the following instructions:

0000 0000 0000 0111 /] @7
1111 1101 1101 1000 // MD=M+1
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dl 42 43 Mnemonic Destination (where to store the computed value)
0 0 0 null The value is not stored anywhere

0 0 1 M Memory[A] (memory register addressed by A)
0 1 0 D D register

0 1 1 MD Memory[A] and D register

1 0 0 A A register

1 0 1 AM A register and Memory[A]

1 1 0 AD A register and D register

1 1 1 AMD A register, Memory[A], and D register

Figure 4.4 The dest field of the C-instruction.

The first instruction causes the computer to select the memory register whose address
is 7 (the so-called M register). The second instruction computes the value of M + 1
and stores the result in both M and D.

The Jump Specification The jump field of the C-instruction tells the computer what
to do next. There are two possibilities: The computer should either fetch and execute
the next instruction in the program, which is the default, or it should fetch and exe-
cute an instruction located elsewhere in the program. In the latter case, we assume
that the A register has been previously set to the address to which we have to jump.

Whether or not a jump should actually materialize depends on the three j-bits of
the jump field and on the ALU output value (computed according to the comp field).
The first j-bit specifies whether to jump in case this value is negative, the second j-bit
in case the value is zero, and the third j-bit in case it is positive. This gives eight
possible jump conditions, shown in figure 4.5.

The following example illustrates the jump commands in action:

Logic Implementation

if Memory[3]=5 then goto 100 @3

else goto 200 D=M // D=Memory[3]
@s
D=D-A // D=D-5
@100
D;JEQ // If D=0 goto 100
@200

0;JMP // Goto 200
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j1 j2 i3 .

(out < 0) (out=0) (out>0) Mnemonic Effect
0 0 0 null No jump
0 0 1 JGT If out > 0 jump
0 1 0 JEQ If out = 0 jump
0 1 1 JGE If out = 0 jump
1 0 0 JLT If out < 0 jump
1 0 1 JNE If out # 0 jump
1 1 0 JLE If out < 0 jump
1 1 1 JMP Jump

Figure 4.5 The jump field of the C-instruction. Out refers to the ALU output (resulting from
the instruction’s comp part), and jump implies “continue execution with the instruction
addressed by the A register.”

The last instruction (0;JMP) effects an unconditional jump. Since the C-instruction
syntax requires that we always effect some computation, we instruct the ALU to
compute 0 (an arbitrary choice), which is ignored.

Conflicting Uses of the A Register As was just illustrated, the programmer can use
the A register to select either a data memory location for a subsequent C-instruction
involving M, or an instruction memory location for a subsequent C-instruction
involving a jump. Thus, to prevent conflicting use of the A register, in well-written
programs a C-instruction that may cause a jump (i.e., with some non-zero j bits)
should not contain a reference to M, and vice versa.

4.2.4 Symbols

Assembly commands can refer to memory locations (addresses) using either con-
stants or symbols. Symbols are introduced into assembly programs in the following
three ways:

®  Predefined symbols: A special subset of RAM addresses can be referred to by
any assembly program using the following predefined symbols:

« Virtual registers: To simplify assembly programming, the symbols RO to R15 are
predefined to refer to RAM addresses 0 to 15, respectively.

*  Predefined pointers: The symbols SP, LCL, ARG, THIS, and THAT are predefined
to refer to RAM addresses 0 to 4, respectively. Note that each of these memory
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locations has two labels. For example, address 2 can be referred to using either R2 or
ARG. This syntactic convention will come to play in the implementation of the virtual
machine, discussed in chapters 7 and 8.

1/O pointers: The symbols SCREEN and KBD are predefined to refer to RAM
addresses 16384 (0x4000) and 24576 (0x6000), respectively, which are the base
addresses of the screen and keyboard memory maps. The use of these I/O devices is
explained later.

®  Label symbols: These user-defined symbols, which serve to label destinations of
goto commands, are declared by the pseudo-command ““(Xxx)”’. This directive
defines the symbol xxx to refer to the instruction memory location holding the next
command in the program. A label can be defined only once and can be used any-
where in the assembly program, even before the line in which it is defined.

®  Variable symbols: Any user-defined symbol xxx appearing in an assembly pro-
gram that is not predefined and is not defined elsewhere using the “(Xxx)” com-
mand is treated as a variable, and is assigned a unique memory address by the
assembler, starting at RAM address 16 (0x0010).

4.2.5 Input/Output Handling

The Hack platform can be connected to two peripheral devices: a screen and a key-
board. Both devices interact with the computer platform through memory maps.
This means that drawing pixels on the screen is achieved by writing binary values
into a memory segment associated with the screen. Likewise, listening to the key-
board is done by reading a memory location associated with the keyboard. The
physical I/O devices and their memory maps are synchronized via continuous refresh
loops.

Screen The Hack computer includes a black-and-white screen organized as 256
rows of 512 pixels per row. The screen’s contents are represented by an 8K memory
map that starts at RAM address 16384 (0x4000). Each row in the physical screen,
starting at the screen’s top left corner, is represented in the RAM by 32 consecu-
tive 16-bit words. Thus the pixel at row r from the top and column c¢ from the left
is mapped on the ¢%16 bit (counting from LSB to MSB) of the word located at
RAM[16384 + r- 32+ ¢/16]. To write or read a pixel of the physical screen, one
reads or writes the corresponding bit in the RAM-resident memory map (1 = black,
0 = white). Example:
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// Draw a single black dot at the screen's top left corner:
@SCREEN // Set the A register to point to the memory

// word that is mapped to the 16 left-most

// pixels of the top row of the screen.
M=1 // Blacken the left-most pixel.

Keyboard The Hack computer interfaces with the physical keyboard via a
single-word memory map located in RAM address 24576 (0x6000). Whenever
a key is pressed on the physical keyboard, its 16-bit ASCII code appears in
RAM][24576]. When no key is pressed, the code 0 appears in this location. In
addition to the usual ASCII codes, the Hack keyboard recognizes the keys shown in
figure 4.6.

4.2.6 Syntax Conventions and File Format

Binary Code Files A binary code file is composed of text lines. Each line is a se-
quence of sixteen “0”” and ‘1”7 ASCII characters, coding a single machine language
instruction. Taken together, all the lines in the file represent a machine language
program. The contract is such that when a machine language program is loaded into
the computer’s instruction memory, the binary code represented by the file’s nth line
is stored in address 7 of the instruction memory (the count of both program lines and
memory addresses starts at 0). By convention, machine language programs are stored
in text files with a “hack’ extension, for example, Prog.hack.

Assembly Language Files By convention, assembly language programs are stored
in text files with an “asm” extension, for example, Prog.asm. An assembly language

Key pressed Code Key pressed Code
newline 128 end 135
backspace 129 page up 136
left arrow 130 page down 137
up arrow 131 insert 138
right arrow 132 delete 139
down arrow 133 esc 140
home 134 f1-f12 141-152

Figure 4.6 Special keyboard codes in the Hack platform.
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file is composed of text lines, each representing either an instruction or a symbol
declaration:

®  Instruction: an A-instruction or a C-instruction.

. (Symbol): This pseudo-command causes the assembler to assign the label
Symbol to the memory location in which the next command of the program will be
stored. It is called “pseudo-command” since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)
Constants and Symbols Constants must be non-negative and are always written in

decimal notation. A user-defined symbol can be any sequence of letters, digits, un-
derscore (_), dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is
considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.
Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to
use uppercase for labels and lowercase for variable names.

4.3 Perspective

The Hack machine language is almost as simple as machine languages get. Most
computers have more instructions, more data types, more registers, more instruction
formats, and more addressing modes. However, any feature not supported by the
Hack machine language may still be implemented in software, at a performance cost.
For example, the Hack platform does not supply multiplication and division as
primitive machine language operations. Since these operations are obviously required
by any high-level language, we will later implement them at the operating system
level (chapter 12).

In terms of syntax, we have chosen to give Hack a somewhat different look-and-
feel than the mechanical nature of most assembly languages. In particular, we have
chosen a high-level language-like syntax for the C-command, for example, D=M
and D=D+M instead of the more traditional LoaD and ADD directives. The reader
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should note, however, that these are just syntactic details. For example, the + char-
acter plays no algebraic role whatsoever in the command D=D+M. Rather, the three-
character string D+M, taken as a whole, is treated as a single assembly mnemonic,
designed to code a single ALU operation.

One of the main characteristics that gives machine languages their particular flavor
is the number of memory addresses that can appear in a single command. In this
respect, Hack may be described as a *“5 address machine™: Since there is no room to
pack both an instruction code and a 15-bit address in the 16-bit instruction format,
operations involving memory access will normally be specified in Hack using two
instructions: an A-instruction to specify the address and a C-instruction to specify the
operation. In comparison, most machine languages can directly specify at least one
address in every machine instruction.

Indeed, Hack assembly code typically ends up being (mostly) an alternating
sequence of 4- and C-instructions, for example, @éxxx followed by D=D+M, @vYY fol-
lowed by 0; JMP, and so on. If you find this coding style tedious or even peculiar, you
should note that friendlier macro commands like D=D+M[xxx] and GOTO YYY can
easily be introduced into the language, causing Hack assembly code to be more
readable as well as about 50 percent shorter. The trick is to have the assembler
translate these macro commands into binary code effecting @xxx followed by D=D+M,
@yyy followed by 0; JMP, and so on.

The assembler, mentioned several times in this chapter, is the program responsible
for translating symbolic assembly programs into executable programs written in bi-
nary code. In addition, the assembler is responsible for managing all the system- and
user-defined symbols found in the assembly program, and for replacing them with
physical memory addresses, as needed. We return to this translation task in chapter
6, in which we build an assembler for the Hack language.

4.4 Project

Objective Get a taste of low-level programming in machine language, and get
acquainted with the Hack computer platform. In the process of working on this
project, you will also become familiar with the assembly process, and you will ap-
preciate visually how the translated binary code executes on the target hardware.

Resources In this project you will use two tools supplied with the book: An assem-
bler, designed to translate Hack assembly programs into binary code, and a CPU
emulator, designed to run binary programs on a simulated Hack platform.
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Contract Write and test the two programs described in what follows. When exe-
cuted on the CPU emulator, your programs should generate the results mandated by
the test scripts supplied in the project directory.

®  Multiplication Program (Mult.asm): The inputs of this program are the current
values stored in R0 and R1 (i.e., the two top RAM locations). The program computes
the product RO*R1 and stores the result in R2. We assume (in this program) that
R0>=0, R1>=0, and RO*R1<32768. Your program need not test these conditions, but
rather assume that they hold. The supplied Mult.tst and Mult.cmp scripts will test
your program on several representative data values.

®  J/O-Handling Program (Fill.asm): This program runs an infinite loop that
listens to the keyboard input. When a key is pressed (any key), the program
blackens the screen, namely, writes “black” in every pixel. When no key is
pressed, the screen should be cleared. You may choose to blacken and clear
the screen in any spatial order, as long as pressing a key continuously for long
enough will result in a fully blackened screen and not pressing any key for
long enough will result in a cleared screen. This program has a test script (Fill.tst)
but no compare file—it should be checked by visibly inspecting the simulated
screen.

Steps We recommend proceeding as follows:

0. The assembler and CPU emulator programs needed for this project are available
in the tools directory of the book’s software suite. Before using them, go through
the assembler tutorial and the CPU emulator tutorial.

1. Use a plain text editor to write the first program in assembly, and save it as
projects/04/mult/Mult.asm.

2. Use the supplied assembler (in either batch or interactive mode) to translate your
program. If you get syntax errors, go to step 1. If there are no syntax errors, the
assembler will produce a file called projects/04/mult/Mult.hack, containing bi-
nary machine instructions.

3. Use the supplied CPU emulator to test the resulting Mult.hack code. This can
be done either interactively, or batch-style using the supplied Mult.tst script. If you
get run-time errors, go to step 1.

4. Repeat stages 1-3 for the second program (Fill.asm), using the projects/04/
£i11 directory.



75 Machine Language

£ pssembler - Ghexamples' SumTol00.asm

¢r Computes sum=1+..+100 {DO00000000000001
(2 {1110111111001000
H=1 s count=l 0000000000010000
@sun + allocated ac RAM{E] 11110101020001000
M= 0000000000000001
(LOOE) |1111110000010000
(@ {0000000001100100
D=l {1110010011010000
@10 0000000000010010
D=D-& & if count=100 . |1110001100000001
(@END {D000000000000001
D;IGT s goto end {1111110000010000 | F {
@1 % |noooonnooon 10000 B S .
D=l . | [1111000010001000 th‘a mmﬁaf mﬁ‘ op £ Oﬂ
S 000000000000000.1 .
M@=D+H 4 SUL=SU+ COUNt ! 1111011100100 (Nﬂtnﬁﬁﬁedl ““5 W@ieﬂ«i
@ ) {0000000000000100
MM+l 4 COUNT=COUNT+L |1110101010000111
@LOOE 00000000000 10010
0; THF |1110101010000111
(END) s infinite loop

Figure 4.7 The visual assembler supplied with the book.

Debugging Tip The Hack language is case sensitive. A common error occurs when
one writes, say, @foo and @Foo in different parts of the program, thinking that both
commands refer to the same variable. In fact, the assembler treats these symbols as
two completely different identifiers.

The Supplied Assembler The book’s software suite includes a Hack assembler that
can be used in either command mode or GUI mode. The latter mode of operation
allows observing the translation process in a visual and step-wise fashion, as shown
in figure 4.7.

The machine language programs produced by the assembler can be tested in
two different ways. First, one can run the .hack program in the CPU emulator.
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£ CPU Emulator {1.4b3) - G examples\SumTol100.asm

controls

256 by 512
pixels
simulated
screen

o [ o fun [ fw e |e | o

keyboard
enabler

[ data register |

instruction
memory

program counter address register

Figure 4.8 The CPU emulator supplied with the book. The loaded program can be displayed
either in symbolic notation (as shown in this screen shot) or in binary code. The screen and the
keyboard are not used by this particular program.

Alternatively, one can run the same program directly on the hardware, by loading it
into the computer’s instruction memory using the hardware simulator. Since we will
finish building the hardware platform only in the next chapter, the former option
makes more sense at this stage.

The Supplied CPU Emulator This program simulates the Hack computer platform.
It allows loading a Hack program into the simulated ROM and visually observing its
execution on the simulated hardware, as shown in figure 4.8.
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For ease of use, the CPU emulator enables loading binary .hack files as well as
symbolic .asm files. In the latter case, the emulator translates the assembly program
into binary code on the fly. This utility seems to render the supplied assembler un-
necessary, but this is not the case. First, the supplied assembler shows the translation
process visually, for instructive purposes. Second, the binary files generated by the
assembler can be executed directly on the hardware platform. To do so, load the
Computer chip (built in chapter 5’s project) into the hardware simulator, then load
the .hack file generated by the assembler into the computer’s ROM chip.
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Form ever follows function.
—Louis Sullivan (1856-1924), architect

Form IS function.
—Ludwig Mies van der Rohe (1886-1969), architect

This chapter is the pinnacle of the “hardware” part of our journey. We are now
ready to take all the chips that we built in chapters 1-3 and integrate them into
a general-purpose computer capable of running stored programs written in the
machine language presented in chapter 4. The specific computer we will build, called
Hack, has two important virtues. On the one hand, Hack is a simple machine that
can be constructed in just a few hours, using previously built chips and the hardware
simulator supplied with the book. On the other hand, Hack is sufficiently powerful
to illustrate the key operating principles and hardware elements of any digital com-
puter. Therefore, building it will give you an excellent understanding of how modern
computers work at the low hardware and software levels.

Following an introduction of the stored program concept, section 5.1 gives a
detailed description of the von Neumann architecture—a central dogma in computer
science underlying the design of almost all modern computers. The Hack platform
is one example of a von Neumann machine, and section 5.2 gives its exact hard-
ware specification. Section 5.3 describes how the Hack platform can be implemented
from available chips, in particular the ALU built in chapter 2 and the registers and
memory systems built in chapter 3.

The computer that will emerge from this construction will be as simple as possible,
but not simpler. This means that it will have the minimal configuration necessary
to run interesting programs and deliver a reasonable performance. The comparison
of this machine to typical computers is taken up in section 5.4, which emphasizes the
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critical role that optimization plays in the design of industrial-strength computers, but
not in this chapter. As usual, the simplicity of our approach has a purpose: All the
chips mentioned in the chapter, culminating in the Hack computer itself, can be built
and tested on a personal computer running our hardware simulator, following the
technical instructions given in section 5.5. The result will be a minimal yet surpris-
ingly powerful computer.

5.1 Background

5.1.1 The Stored Program Concept

Compared to all the other machines around us, the most unique feature of the digital
computer is its amazing versatility. Here is a machine with finite hardware that can
perform a practically infinite array of tasks, from interactive games to word process-
ing to scientific calculations. This remarkable flexibility—a boon that we have come
to take for granted—is the fruit of a brilliant idea called the stored program concept.
Formulated independently by several mathematicians in the 1930s, the stored pro-
gram concept is still considered the most profound invention in, if not the very
foundation of, modern computer science.

Like many scientific breakthroughs, the basic idea is rather simple. The computer
is based on a fixed hardware platform, capable of executing a fixed repertoire of
instructions. At the same time, these instructions can be used and combined like
building blocks, yielding arbitrarily sophisticated programs. Moreover, the logic of
these programs is not embedded in the hardware, as it was in mechanical com-
puters predating 1930. Instead, the program’s code is stored and manipulated in
the computer memory, just like data, becoming what is known as “software.”” Since
the computer’s operation manifests itself to the user through the currently executing
software, the same hardware platform can be made to behave completely differently
each time it is loaded with a different program.

5.1.2 The von Neumann Architecture

The stored program concept is a key element of many abstract and practical
computer models, most notably the universal Turing machine (1936) and the von
Neumann machine (1945). The Turing machine—an abstract artifact describing a
deceptively simple computer—is used mainly to analyze the logical foundations of
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CPU
< Input
Memory Arithmetic Logic
Unit (ALU)
(data < >
+ Registers
instructions)
Control Output

Figure 5.1 The von Neumann architecture (conceptual). At this level of detail, this model
describes the architecture of almost all digital computers. The program that operates the
computer resides in its memory, in accordance with the “stored program’ concept.

computer systems. In contrast, the von Neumann machine is a practical architecture
and the conceptual blueprint of almost all computer platforms today.

The von Neumann architecture is based on a central processing unit (CPU), inter-
acting with a memory device, receiving data from some input device, and sending
data to some output device (figure 5.1). At the heart of this architecture lies the stored
program concept: The computer’s memory stores not only the data that the com-
puter manipulates, but also the very instructions that tell the computer what to do.
Let us explore this architecture in some detail.

5.1.3 Memory

The memory of a von Neumann machine holds two types of information: data items
and programming instructions. The two types of information are usually treated dif-
ferently, and in some computers they are stored in separate memory units. In spite
of their different functions though, both types of information are represented as bi-
nary numbers that are stored in the same generic random-access structure: a contin-
uous array of cells of some fixed width, also called words or locations, each having
a unique address. Hence, an individual word (representing either a data item or an
instruction) is specified by supplying its address.

Data Memory High-level programs manipulate abstract artifacts like variables,
arrays, and objects. When translated into machine language, these data abstractions
become series of binary numbers, stored in the computer’s data memory. Once an
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individual word has been selected from the data memory by specifying its address,
it can be either read or written to. In the former case, we retrieve the word’s value.
In the latter case, we store a new value into the selected location, erasing the old
value.

Instruction Memory When translated into machine language, each high-level com-
mand becomes a series of binary words, representing machine language instructions.
These instructions are stored in the computer’s instruction memory. In each step of
the computer’s operation, the CPU fetches (i.e., reads) a word from the instruction
memory, decodes it, executes the specified instruction, and figures out which instruc-
tion to execute next. Thus, changing the contents of the instruction memory has the
effect of completely changing the computer’s operation.

The instructions that reside in the instruction memory are written in an agreed-
upon formalism called machine language. In some computers, the specification of
each operation and the codes representing its operands are represented in a single-
word instruction. Other computers split this specification over several words.

5.1.4 Central Processing Unit

The CPU—the centerpiece of the computer’s architecture—is in charge of executing
the instructions of the currently loaded program. These instructions tell the CPU to
carry out various calculations, to read and write values from and into the memory,
and to conditionally jump to execute other instructions in the program. The CPU
executes these tasks using three main hardware elements: an Arithmetic-Logic Unit
(ALU), a set of registers, and a control unit.

Arithmetic Logic Unit The ALU is built to perform all the low-level arithmetic
and logical operations featured by the computer. For instance, a typical ALU can
add two numbers, test whether a number is positive, manipulate the bits in a word of
data, and so on.

Registers The CPU is designed to carry out simple calculations quickly. In order
to boost performance, it is desirable to store the results of these calculations locally,
rather than ship them in and out of memory. Thus, every CPU is equipped with a
small set of high-speed registers, each capable of holding a single word.

Control Unit A computer instruction is represented as a binary code, typically 16,
32, or 64 bits wide. Before such an instruction can be executed, it must be decoded,
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and the information embedded in it must be used to signal various hardware devices
(ALU, registers, memory) how to execute the instruction. The instruction decoding is
done by some control unit, which is also responsible for figuring out which instruc-
tion to fetch and execute next.

The CPU operation can now be described as a repeated loop: fetch an instruction
(word) from memory; decode it; execute it, fetch the next instruction, and so on. The
instruction execution may involve one or more of the following micro tasks: have
the ALU compute some value, manipulate internal registers, read a word from the
memory, and write a word to the memory. In the process of executing these tasks,
the CPU also figures out which instruction to fetch and execute next.

5.1.5 Registers

Memory access is a slow affair. When the CPU is instructed to retrieve the contents
of address j of the memory, the following process ensues: (a) j travels from the CPU
to the RAM; (b) the RAM’s direct-access logic selects the memory register whose
address is J; (c) the contents of RAM]| | travel back to the CPU. Registers provide
the same service—data retrieval and storage—without the round-trip travel and
search expenses. First, the registers reside physically inside the CPU chip, so access-
ing them is almost instantaneous. Second, there are typically only a handful of
registers, compared to millions of memory cells. Therefore, machine language
instructions can specify which registers they want to manipulate using just a few bits,
resulting in thinner instruction formats.

Different CPUs employ different numbers of registers, of different types, for dif-
ferent purposes. In some computer architectures each register can serve more than
one purpose:

Data registers: These registers give the CPU short-term memory services. For ex-
ample, when calculating the value of (¢ — b) - ¢, we must first compute and remember
the value of (¢ — b). Although this result can be temporarily stored in some memory
location, a better solution is to store it locally inside the CPU—in a data register.

Addressing registers: The CPU has to continuously access the memory in order to
read data and write data. In every one of these operations, we must specify which
individual memory word has to be accessed, namely, supply an address. In some
cases this address appears as part of the current instruction, while in others it
depends on the execution of a previous instruction. In the latter case, the address
should be stored in a register whose contents can be later treated as a memory
address—an addressing register.
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Program counter register: When executing a program, the CPU must always keep
track of the address of the next instruction that must be fetched from the instruction
memory. This address is kept in a special register called program counter, or PC. The
contents of the PC are then used as the address for fetching instructions from the in-
struction memory. Thus, in the process of executing the current instruction, the CPU
updates the PC in one of two ways. If the current instruction contains no goto direc-
tive, the PC is incremented to point to the next instruction in the program. If the
current instruction includes a goto n directive that should be executed, the CPU loads
n into the PC.

5.1.6 Input and Output

Computers interact with their external environments using a diverse array of input
and output (I/O) devices. These include screens, keyboards, printers, scanners, net-
work interface cards, CD-ROMs, and so forth, not to mention the bewildering array
of proprietary components that embedded computers are called to control in auto-
mobiles, weapon systems, medical equipment, and so on. There are two reasons why
we do not concern ourselves here with the anatomy of these various devices. First,
every one of them represents a unique piece of machinery requiring a unique knowl-
edge of engineering. Second, and for this very same reason, computer scientists have
devised various schemes to make all these devices look exactly the same to the com-
puter. The simplest trick in this art is called memory-mapped I/O.

The basic idea is to create a binary emulation of the I/O device, making it “look”
to the CPU like a normal memory segment. In particular, each I/O device is allo-
cated an exclusive area in memory, becoming its “memory map.” In the case of an
input device (keyboard, mouse, etc.), the memory map is made to continuously re-
flect the physical state of the device; in the case of an output device (screen, speakers,
etc.), the memory map is made to continuously drive the physical state of the device.
When external events affect some input devices (e.g., pressing a key on the keyboard
or moving the mouse), certain values are written in their respective memory maps.
Likewise, if we want to manipulate some output devices (e.g., draw something on the
screen or play a tune), we write some values in their respective memory maps. From
the hardware point of view, this scheme requires each I/O device to provide an in-
terface similar to that of a memory unit. From a software point of view, each 1/O
device is required to define an interaction contract, so that programs can access it
correctly. As a side comment, given the multitude of available computer platforms
and I/O devices, one can appreciate the crucial role that standards play in designing
computer architectures.
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The practical implications of a memory-mapped I/O architecture are significant:
The design of the CPU and the overall platform can be totally independent of the
number, nature, or make of the I/O devices that interact, or will interact, with the
computer. Whenever we want to connect a new 1/O device to the computer, all we
have to do is allocate to it a new memory map and “take note” of its base address
(these one-time configurations are typically done by the operating system). From this
point onward, any program that wants to manipulate this I/O device can do so—all
it needs to do is manipulate bits in memory.

5.2 The Hack Hardware Platform Specification

5.2.1 Overview

The Hack platform is a 16-bit von Neumann machine, consisting of a CPU,
two separate memory modules serving as instruction memory and data memory, and
two memory-mapped I/O devices: a screen and a keyboard. Certain parts of this
architecture—especially its machine language—were presented in chapter 4. A sum-
mary of this discussion is given here, for ease of reference.

The Hack computer executes programs that reside in its instruction memory. The
instruction memory is a read-only device, and thus programs are loaded into it using
some exogenous means. For example, the instruction memory can be implemented in
a ROM chip that is preburned with the required program. Loading a new program
can be done by replacing the entire ROM chip. In order to simulate this operation,
hardware simulators of the Hack platform must provide a means for loading the in-
struction memory from a text file containing a program written in the Hack machine
language. (From now on, we will refer to Hack’s data memory and instruction
memory as RAM and ROM, respectively.)

The Hack CPU consists of the ALU specified in chapter 2 and three registers
called data register (D), address register (A), and program counter (PC). D and A are
general-purpose 16-bit registers that can be manipulated by arithmetic and logical
instructions like A=D-1, D=D|Aa, and so on, following the Hack machine language
specified in chapter 4. While the D-register is used solely to store data values, the
contents of the A-register can be interpreted in three different ways, depending on the
instruction’s context: as a data value, as a RAM address, or as a ROM address.

The Hack machine language is based on two 16-bit command types. The address
instruction has the format Ovvvvvvvvvvvvvvy, each v being 0 or 1. This instruction
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causes the computer to load the 15-bit constant vvv. . .v into the A-register. The
compute instruction has the format 11lacccccedddjjj. The a- and c-bits instruct
the ALU which function to compute, the d-bits instruct where to store the ALU
output, and the j-bits specify an optional jump condition, all according to the Hack
machine language specification.

The computer architecture is wired in such a way that the output of the program
counter (PC) chip is connected to the address input of the ROM chip. This way, the
ROM chip always emits the word ROM[PC], namely, the contents of the instruction
memory location whose address is “pointed at” by the PC. This value is called the
current instruction. With that in mind, the overall computer operation during each
clock cycle is as follows:

Execute: Various bit parts of the current instruction are simultaneously fed to
various chips in the computer. If it’s an address instruction (most significant bit = 0),
the A-register is set to the 15-bit constant embedded in the instruction. If it’s a com-
pute instruction (MSB = 1), its underlying a-, c-, d- and j-bits are treated as control
bits that cause the ALU and the registers to execute the instruction.

Fetch:  Which instruction to fetch next is determined by the jump bits of the cur-
rent instruction and by the ALU output. Taken together, these values determine
whether a jump should materialize. If so, the PC is set to the value of the A-register;
otherwise, the PC is incremented by 1. In the next clock cycle, the instruction that
the program counter points at emerges from the ROM’s output, and the cycle
continues.

This particular fetch-execute cycle implies that in the Hack platform, elementary
operations involving memory access usually require two instructions: an address
instruction to set the A register to a particular address, and a subsequent compute
instruction that operates on this address (a read/write operation on the RAM or a
jump operation into the ROM).

We now turn to formally specify the Hack hardware platform. Before starting,
we wish to point out that this platform can be assembled from previously built com-
ponents. The CPU is based on the ALU built in chapter 2. The registers and the
program counter are identical copies of the 16-bit register and 16-bit counter, respec-
tively, built in chapter 3. Likewise, the ROM and the RAM chips are versions of the
memory units built in chapter 3. Finally, the screen and the keyboard devices will
interface with the hardware platform through memory maps, implemented as built-in
chips that have the same interface as RAM chips.
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5.2.2 Central Processing Unit (CPU)

The CPU of the Hack platform is designed to execute 16-bit instructions accord-
ing to the Hack machine language specified in chapter 4. It expects to be connected
to two separate memory modules: an instruction memory, from which it fetches
instructions for execution, and a data memory, from which it can read, and into
which it can write, data values. Figure 5.2 gives the specification details.

5.2.3 Instruction Memory

The Hack instruction memory is implemented in a direct-access Read-Only Memory
device, also called ROM. The Hack ROM consists of 32K addressable 16-bit regis-
ters, as shown in figure 5.3.

5.2.4 Data Memory

Hack’s data memory chip has the interface of a typical RAM device, like that built
in chapter 3 (see, e.g., figure 3.3). To read the contents of register n, we put n in the
memory’s address input and probe the memory’s out output. This is a combina-
tional operation, independent of the clock. To write a value v into register n, we put
v in the in input, n in the address input, and assert the memory’s load bit. This is
a sequential operation, and so register n will commit to the new value v in the next
clock cycle.

In addition to serving as the computer’s general-purpose data store, the data
memory also interfaces between the CPU and the computer’s input/output devices,
using memory maps.

Memory Maps In order to facilitate interaction with a user, the Hack platform can
be connected to two peripheral devices: screen and keyboard. Both devices interact
with the computer platform through memory-mapped buffers. Specifically, screen
images can be drawn and probed by writing and reading, respectively, words in a
designated memory segment called screen memory map. Similarly, one can check
which key is presently pressed on the keyboard by probing a designated memory
word called keyboard memory map. The memory maps interact with their respective
I/O devices via peripheral logic that resides outside the computer. The contract is as
follows: Whenever a bit is changed in the screen’s memory map, a respective pixel is
drawn on the physical screen. Whenever a key is pressed on the physical keyboard,
the respective code of this key appears in the keyboard’s memory map.
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Figure 5.2 The Central Processing Unit. Assembled from the ALU and the registers built in
chapters 2 and 3, respectively.
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address out
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15 16
Chip Name: ROM32K // 16-bit read-only 32K memory
Input: address[15] // Address in the ROM
Output: out[1l6] // Value of ROM[address]

Function: out=ROM[address] // 1l6-bit assignment

Comment : The ROM is preloaded with a machine language program.
Hardware implementations can treat the ROM as a
built-in chip. Software simulators must supply a
mechanism for loading a program into the ROM.

Figure 5.3 Instruction memory.

We specify first the built-in chips that interface between the hardware interface and
the 1/O devices, then the complete memory module that embeds these chips.

Screen The Hack computer can interact with a black-and-white screen organized as
256 rows of 512 pixels per row. The computer interfaces with the physical screen via
a memory map, implemented by a chip called Screen. This chip behaves like regular
memory, meaning that it can be read and written to. In addition, it features the side
effect that any bit written to it is reflected as a pixel on the physical screen (1 = black,
0 = white). The exact mapping between the memory map and the physical screen
coordinates is given in figure 5.4.

Keyboard The Hack computer can interact with a standard keyboard, like that of
a personal computer. The computer interfaces with the physical keyboard via a chip
called Keyboard (figure 5.5). Whenever a key is pressed on the physical keyboard, its
16-bit ASCII code appears as the output of the Keyboard chip. When no key is
pressed, the chip outputs 0. In addition to the usual ASCII codes, the Keyboard chip
recognizes, and responds to, the keys listed in figure 5.6.



90

Chapter 5

Figure 5.4 Screen interface.

Figure 5.5 Keyboard interface.
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Key Keyboard Key Keyboard
pressed output pressed output
newline 128 end 135
backspace 129 page up 136

left arrow 130 page down 137

up arrow 131 insert 138

right arrow 132 delete 139
down arrow 133 esc 140
home 134 f1-f12 141-152

Figure 5.6 Special keyboard keys in the Hack platform.

Now that we’ve described the internal parts of the data memory, we are ready to
specify the entire data memory address space.

Overall Memory The overall address space of the Hack platform (i.e., its entire
data memory) is provided by a chip called Memory. The memory chip includes the
RAM (for regular data storage) and the screen and keyboard memory maps. These
modules reside in a single address space that is partitioned into four sections, as
shown in figure 5.7.

5.2.5 Computer

The topmost chip in the Hack hardware hierarchy is a complete computer system
designed to execute programs written in the Hack machine language. This abstrac-
tion is described in figure 5.8. The Computer chip contains all the hardware devices
necessary to operate the computer including a CPU, a data memory, an instruction
memory (ROM), a screen, and a keyboard, all implemented as internal parts. In
order to execute a program, the program’s code must be preloaded into the ROM.
Control of the screen and the keyboard is achieved via their memory maps, as
described in the Screen and Keyboard chip specifications.

5.3 Implementation

This section gives general guidelines on how the Hack computer platform can be
built to deliver the various services described in its specification (section 5.2). As
usual, we don’t give exact building instructions, expecting readers to come up with



92 Chapter 5

load
Data Memory
0
in
7 I RAM
16
(16K)
16383
address 16384 Screen
memory map
15 24575 (8K)
T Keyboard
memory map
A

Figure 5.7 Data memory.

'V -
Screen

O Keyboard



93

Computer Architecture

reset F\Q/ Screen
—>

Computer

=== 55
‘/‘\_ =,

O Keyboard

Figure 5.8 Computer. Topmost chip of the Hack hardware platform.

their own designs. All the chips can be built in HDL and simulated on a personal
computer using the hardware simulator that comes with the book. As usual, techni-
cal details are given in the final Project section of this chapter.

Since most of the action in the Hack platform occurs in its Central Processing
Unit, the main implementation challenge is building the CPU. The construction of
the rest of the computer platform is straightforward.

5.3.1 The Central Processing Unit

The CPU implementation objective is to create a logic gate architecture capable of
executing a given Hack instruction and fetching the next instruction to be executed.
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Figure 5.9 Proposed CPU implementation. The diagram shows only data and address paths,
namely, wires that carry data and addresses from one place to another. The diagram does
not show the CPU’s control logic, except for inputs and outputs of control bits, labeled with a
circled “c”. Thus it should be viewed as an incomplete chip diagram.

Naturally, the CPU will include an ALU capable of executing Hack instructions, a
set of registers, and some control logic designed to fetch and decode instructions.
Since almost all these hardware elements were already built in previous chapters, the
key question here is how to connect them in order to effect the desired CPU opera-
tion. One possible solution is illustrated in figure 5.9.

The key element missing in figure 5.9 is the CPU’s control logic, designed to per-
form the following tasks:

®  [nstruction decoding: Figure out what the instruction means (a function of the
instruction).

" [ustruction execution: Signal the various parts of the computer what they should
do in order to execute the instruction (a function of the instruction).
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®  Next instruction fetching: Figure out which instruction to execute next (a func-
tion of the instruction and the ALU output).

(In what follows, the term proposed CPU implementation refers to figure 5.9.)

Instruction Decoding The 16-bit word located in the CPU’s instruction input
can represent either an A-instruction or a C-instruction. In order to figure out what
this 16-bit word means, it can be broken into the fields “i xx a cccccc ddd jjj”.
The i-bit codes the instruction type, which is 0 for an A4-instruction and 1 for a C-
instruction. In case of a C-instruction, the a-bit and the c-bits code the comp part,
the d-bits code the dest part, and the j-bits code the jump part of the instruction. In
case of an A-instruction, the 15 bits other than the i-bit should be interpreted as a
15-bit constant.

Instruction Execution The various fields of the instruction (i-, a-, c-, d-, and j-bits)
are routed simultaneously to various parts of the architecture, where they cause
different chips to do what they are supposed to do in order to execute either the
A-instruction or the C-instruction, as mandated by the machine language specifi-
cation. In particular, the a-bit determines whether the ALU will operate on the A
register input or on the Memory input, the c-bits determine which function the
ALU will compute, and the d-bits enable various locations to accept the ALU
result.

Next Instruction Fetching As a side effect of executing the current instruction, the
CPU also determines the address of the next instruction and emits it via its pc out-
put. The “driver” of this task is the program counter—an internal part of the CPU
whose output is fed directly to the CPU’s pc output. This is precisely the PC chip
built in chapter 3 (see figure 3.5).

Most of the time, the programmer wants the computer to fetch and execute the
next instruction in the program. Thus if ¢ is the current time-unit, the default pro-
gram counter operation should be PC(r) = PC(¢ — 1) + 1. When we want to effect a
goto n operation, the machine language specification requires to first set the A register
to n (via an A-instruction) and then issue a jump directive (coded by the j-bits of a
subsequent C-instruction). Hence, our challenge is to come up with a hardware im-
plementation of the following logic:

If jump(?) then PC(¢) = A(t — 1)
else PC(r) =PC(r— 1) + 1



96

Chapter 5

Conveniently, and actually by careful design, this jump control logic can be easily
effected by the proposed CPU implementation. Recall that the PC chip interface
(figure 3.5) has a load control bit that enables it to accept a new input value. Thus,
to effect the desired jump control logic, we start by connecting the output of the A
register to the input of the PC. The only remaining question is when to enable the PC
to accept this value (rather than continuing its steadfast counting), namely, when
does a jump need to occur. This is a function of two signals: (a) the j-bits of the
current instruction, specifying on which condition we are supposed to jump, and (b)
the ALU output status bits, indicating whether the condition is satisfied. If we have a
jump, the PC should be loaded with A’s output. Otherwise, the PC should increment
by 1.

Additionally, if we want the computer to restart the program’s execution, all we
have to do is reset the program counter to 0. That’s why the proposed CPU imple-
mentation feeds the CPU’s reset input directly into the reset pin of the PC chip.

5.3.2 Memory

According to its specification, the Memory chip of the Hack platform is essentially a
package of three lower-level chips: RAM16K, Screen, and Keyboard. At the same-
time, users of the Memory chip must see a single logical address space, spanning
from location 0 to 24576 (0x0000 to 0x6000—see figure 5.7). The implementation of
the Memory chip should create this continuum effect. This can be done by the same
technique used to combine small RAM units into larger ones, as we have done in
chapter 3 (see figure 3.6 and the discussion of n-register memory that accompanies it).

5.3.3 Computer
Once the CPU and the Memory chips have been implemented and tested, the con-

struction of the overall computer is straightforward. Figure 5.10 depicts a possible
implementation.

5.4 Perspective

Following the general spirit of the book, the architecture of the Hack computer is
rather minimal. Typical computer platforms have more registers, more data types,
more powerful ALUs, and richer instruction sets. However, these differences are
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Figure 5.10 Proposed implementation of the topmost Computer chip.

mainly quantitative. From a qualitative standpoint, Hack is quite similar to most
digital computers, as they all follow the same conceptual paradigm: the von Neu-
mann architecture.

In terms of function, computer systems can be classified into two categories:
general-purpose computers, designed to easily switch from executing one program
to another, and dedicated computers, usually embedded in other systems like cell
phones, game consoles, digital cameras, weapon systems, factory equipment, and
so on. For any particular application, a single program is burned into the dedicated
computer’s ROM, and is the only one that can be executed (in game consoles,
for example, the game software resides in an external cartridge that is simply a re-
placeable ROM module encased in some fancy package). Aside from this differ-
ence, general-purpose and dedicated computers share the same architectural ideas:
stored programs, fetch-decode-execute logic, CPU, registers, program counter, and
so on.

Unlike Hack, most general-purpose computers use a single address space for stor-
ing both data and instructions. In such architectures, the instruction address as well
as the optional data address specified by the instruction must be fed into the same
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destination: the single address input of the shared address space. Clearly, this cannot
be done at the same time. The standard solution is to base the computer implemen-
tation on a two-cycle logic. During the fetch cycle, the instruction address is fed to
the address input of the memory, causing it to immediately emit the current instruc-
tion, which is then stored in an instruction register. In the subsequent execute cycle,
the instruction is decoded, and the optional data address inferred from it is fed to the
memory’s address input, allowing the instruction to manipulate the selected memory
location. In contrast, the Hack architecture is unique in that it partitions the address
space into two separate parts, allowing a single-cycle fetch-execute logic. The price of
this simpler hardware design is that programs cannot be changed dynamically.

In terms of I/O, the Hack keyboard and screen are rather spartan. General-
purpose computers are typically connected to multiple I/O devices like printers,
disks, network connections, and so on. Also, typical screens are obviously much
more powerful than the Hack screen, featuring more pixels, many brightness levels
in each pixel, and colors. Still, the basic principle that each pixel is controlled by a
memory-resident binary value is maintained: instead of a single bit controlling the
pixel’s black or white color, several bits are devoted to control the level of brightness
of each of the three primary colors that, together, produce the pixel’s ultimate color.
Likewise, the memory mapping of the Hack screen is simplistic. Instead of map-
ping pixels directly into bits of memory, most modern computers allow the CPU
to send high-level graphic instructions to a graphics card that controls the screen.
This way, the CPU is relieved from the tedium of drawing figures like circles and
polygons directly—the graphics card takes care of this task using its own embedded
chip-set.

Finally, it should be stressed that most of the effort and creativity in designing
computer hardware is invested in achieving better performance. Thus, hardware ar-
chitecture courses and textbooks typically evolve around such issues as implementing
memory hierarchies (cache), better access to 1/O devices, pipelining, parallelism, in-
struction prefetching, and other optimization techniques that were sidestepped in this
chapter.

Historically, attempts to enhance the processor’s performance have led to two
main schools of hardware design. Advocates of the Complex Instruction Set Com-
puting (CISC) approach argue for achieving better performance by providing rich
and elaborate instruction sets. Conversely, the Reduced Instruction Set Computing
(RISC) camp uses simpler instruction sets in order to promote as fast a hardware
implementation as possible. The Hack computer does not enter this debate, featuring
neither a strong instruction set nor special hardware acceleration techniques.
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5.5 Project

Objective Build the Hack computer platform, culminating in the topmost Com-
puter chip.

Resources The only tools that you need for completing this project are the hard-
ware simulator supplied with the book and the test scripts described here. The com-
puter platform should be implemented in the HDL language specified in appendix A.

Contract The computer platform built in this project should be capable of executing
programs written in the Hack machine language, specified in chapter 4. Demonstrate
this capability by having your Computer chip run the three programs given here.

Component Testing We supply test scripts and compare files for unit-testing the
Memory and CPU chips in isolation. It’s important to complete the testing of these
chips before building and testing the overall Computer chip.

Test Programs A natural way to test the overall Computer chip implementation
is to have it execute some sample programs written in the Hack machine language.
In order to run such a test, one can write a test script that loads the Computer chip
into the hardware simulator, loads a program from an external text file into its ROM
chip, and then runs the clock enough cycles to execute the program. We supply all
the files necessary to run three such tests, as follows:

1. Add.hack: Adds the two constants 2 and 3 and writes the result in RAMJ0].

2. Max.hack: Computes the maximum of RAM[0] and RAM]1] and writes the
result in RAM]2].

3. Rect.hack: Draws a rectangle of width 16 pixels and length RAM][0] at the
top left of the screen.

Before testing your Computer chip on any one of the above programs, read the test
script associated with the program and be sure to understand the instructions given
to the simulator. Appendix B may be a useful reference here.

Steps Build the computer in the following order:

®  Memory: Composed from three chips: RAMI6K, Screen, and Keyboard. The
Screen and the Keyboard are available as built-in chips and there is no need to build
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them. Although the RAM16K chip was built in the project in chapter 3, we recom-
mend using its built-in version, as it provides a debugging-friendly GUI.

m CPU: Can be composed according to the proposed implementation given in
figure 5.9, using the ALU and register chips built in chapters 2 and 3, respectively.
We recommend using the built-in versions of these chips, in particular ARegister
and DRegister. These chips have exactly the same functionality of the Register chip
specified in chapter 3, plus GUI side effects.

In the course of implementing the CPU, it is allowed (but not necessarily recom-
mended) to specify and build some internal chips of your own. This is up to you. If
you choose to create new chips not mentioned in the book, be sure to document and
test them carefully before you plug them into the architecture.

®  nstruction Memory: Use the built-in ROM32K chip.

®  Computer: The topmost Computer chip can be composed from the chips men-
tioned earlier, using figure 5.10 as a blueprint.

The Hardware Simulator As in the projects in chapters 1-3, all the chips in this
project (including the topmost Computer chip) can be implemented and tested using
the hardware simulator supplied with the book. Figure 5.11 is a screen shot of testing
the Rect.hack program on a Computer chip implementation.
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Figure 5.11 Testing the Computer chip on the hardware simulator. The Rect program draws
a rectangle of width 16 pixels and length RAM]I0] at the top left of the screen. Note that the
program is correct. Thus, if it does not work properly, it means that the computer platform on
which it runs (Computer.hdl and/or some of its lower-level parts) is buggy.
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What'’s in a name? That which we call a rose by any other name would smell as sweet.
—Shakespeare, from Romeo and Juliet

The first half of the book (chapters 1-5) described and built a computer’s hardware
platform. The second half of the book (chapters 6-12) focuses on the computer’s
software hierarchy, culminating in the development of a compiler and a basic oper-
ating system for a simple, object-based programming language. The first and most
basic module in this software hierarchy is the assembler. In particular, chapter 4
presented machine languages in both their assembly and binary representations. This
chapter describes how assemblers can systematically translate programs written in
the former into programs written in the latter. As the chapter unfolds, we explain
how to develop a Hack assembler—a program that generates binary code that can
run as is on the hardware platform built in chapter 5.

Since the relationship between symbolic assembly commands and their corre-
sponding binary codes is straightforward, writing an assembler (using some high-
level language) is not a difficult task. One complication arises from allowing
assembly programs to use symbolic references to memory addresses. The assembler is
expected to manage these user-defined symbols and resolve them to physical memory
addresses. This task is normally done using a symbol table—a classical data structure
that comes to play in many software translation projects.

As usual, the Hack assembler is not an end in itself. Rather, it provides a simple
and concise demonstration of the key software engineering principles used in the
construction of any assembler. Further, writing the assembler is the first in the series
of seven software development projects that accompany the rest of the book. Unlike
the hardware projects, which were implemented in HDL, the software projects that
construct the translator programs (assembler, virtual machine, and compiler) may be
implemented in any programming language. In each project, we provide a language-
neutral API and a detailed step-by-step test plan, along with all the necessary test
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programs and test scripts. Each one of these projects, beginning with the assembler,
is a stand-alone module that can be developed and tested in isolation from all the
other projects.

6.1 Background

Machine languages are typically specified in two flavors: symbolic and binary. The
binary codes—for example, 110000101000000110000000000000111—represent
actual machine instructions, as understood by the underlying hardware. For exam-
ple, the instruction’s leftmost 8 bits can represent an operation code, say LOAD, the
next 8 bits a register, say R3, and the remaining 16 bits an address, say 7. Depending
on the hardware’s logic design and the agreed-upon machine language, the overall
32-bit pattern can thus cause the hardware to effect the operation “load the contents
of Memory[7] into register R3.” Modern computer platforms support dozens if
not hundreds of such elementary operations. Thus, machine languages can be rather
complex, involving many operation codes, different memory addressing modes, and
various instruction formats.

One way to cope with this complexity is to document machine instructions
using an agreed-upon syntax, say LOAD R3,7 rather than 110000101000000110
000000000000111. And since the translation from symbolic notation to binary code
is straightforward, it makes sense to allow low-level programs to be written in sym-
bolic notation and to have a computer program translate them into binary code. The
symbolic language is called assembly, and the translator program assembler. The
assembler parses each assembly command into its underlying fields, translates each
field into its equivalent binary code, and assembles the generated codes into a binary
instruction that can be actually executed by the hardware.

Symbols Binary instructions are represented in binary code. By definition, they
refer to memory addresses using actual numbers. For example, consider a program
that uses a variable to represent the weight of various things, and suppose that this
variable has been mapped on location 7 in the computer’s memory. At the binary
code level, instructions that manipulate the weight variable must refer to it using the
explicit address 7. Yet once we step up to the assembly level, we can allow writing
commands like LOAD R3,weight instead of LOAD R3, 7. In both cases, the command
will effect the same operation: “set R3 to the contents of Memory[7].” In a similar
fashion, rather than using commands like goto 250, assembly languages allow com-
mands like goto loop, assuming that somewhere in the program the symbol loop is
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made to refer to address 250. In general then, symbols are introduced into assembly
programs from two sources:

®  Variables: The programmer can use symbolic variable names, and the trans-
lator will “automatically” assign them to memory addresses. Note that the actual
values of these addresses are insignificant, so long as each symbol is resolved to the
same address throughout the program’s translation.

®  [Labels: The programmer can mark various locations in the program with sym-
bols. For example, one can declare the label 1oop to refer to the beginning of a cer-
tain code segment. Other commands in the program can then goto loop, either
conditionally or unconditionally.

The introduction of symbols into assembly languages suggests that assemblers
must be more sophisticated than dumb text processing programs. Granted, trans-
lating agreed-upon symbols into agreed-upon binary codes is not a complicated task.
At the same time, the mapping of user-defined variable names and symbolic labels
on actual memory addresses is not trivial. In fact, this symbol resolution task is the
first nontrivial translation challenge in our ascent up the software hierarchy from the
hardware level. The following example illustrates the challenge and the common way
to address it.

Symbol Resolution Consider figure 6.1, showing a program written in some self-
explanatory low-level language. The program contains four user-defined symbols:
two variable names (i and sum) and two labels (loop and end). How can we sys-
tematically convert this program into a symbol-less code?

We start by making two arbitrary game rules: The translated code will be stored
in the computer’s memory starting at address 0, and variables will be allocated to
memory locations starting at address 1024 (these rules depend on the specific target
hardware platform). Next, we build a symbol table, as follows. For each new symbol
xxx encountered in the source code, we add a line (xxx,n) to the symbol table,
where 7 is the memory address associated with the symbol according to the game
rules. After completing the construction of the symbol table, we use it to translate the
program into its symbol-less version.

Note that according to the assumed game rules, variables i and sum are allo-
cated to addresses 1024 and 1025, respectively. Of course any other two addresses
will be just as good, so long as all references to i and sum in the program resolve
to the same physical addresses, as indeed is the case. The remaining code is self-
explanatory, except perhaps for instruction 6. This instruction terminates the pro-
gram’s execution by putting the computer in an infinite loop.
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Code with symbols Symbol table Code with symbols resolved
// Computes sum=1+...+100 i 1024 00 M[1024]=1 // (M=memory)
sum 1025 01 M[1025]=0
loop 2 02 if M[1024]1=101 goto 6
end 6 03 M[1025]=M[1025]+M[1024]
if i=101 goto end 04 M[1024]=M[1024]+1
sum=sum+i (assuming that o5 | goto 2
variables are 06 | goto 6
goto loop allocated to
Memory([1024] (assuming that each symbolic
goto end onward) command is translated into one

word in memory)

Figure 6.1 Symbol resolution using a symbol table. The line numbers are not part of the
program—they simply count all the lines in the program that represent real instructions,
namely, neither comments nor label declarations. Note that once we have the symbol table in
place, the symbol resolution task is straightforward.

Three comments are in order here. First, note that the variable allocation as-
sumption implies that the largest program that we can run is 1,024 instructions
long. Since realistic programs (like the operating system) are obviously much larger,
the base address for storing variables will normally be much farther. Second, the as-
sumption that each source command is mapped on one word may be naive. Typi-
cally, some assembly commands (e.g., if i=101 goto end) may translate into several
machine instructions and thus will end up occupying several memory locations.
The translator can deal with this variance by keeping track of how many words
each source command generates, then updating its “instruction memory counter”
accordingly.

Finally, the assumption that each variable is represented by a single memory lo-
cation is also naive. Programming languages feature variables of different types, and
these occupy different memory spaces on the target computer. For example, the C
language data types short and double represent 16-bit and 64-bit numbers, respec-
tively. When a C program is run on a 16-bit machine, these variables will occupy a
single memory address and a block of four consecutive addresses, respectively. Thus,
when allocating memory space for variables, the translator must take into account
both their data types and the word width of the target hardware.

The Assembler Before an assembly program can be executed on a computer, it must
be translated into the computer’s binary machine language. The translation task is
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done by a program called the assembler. The assembler takes as input a stream of
assembly commands and generates as output a stream of equivalent binary instruc-
tions. The resulting code can be loaded as is into the computer’s memory and exe-
cuted by the hardware.

We see that the assembler is essentially a text-processing program, designed to
provide translation services. The programmer who is commissioned to write the
assembler must be given the full documentation of the assembly syntax, on the
one hand, and the respective binary codes, on the other. Following this contract—
typically called machine language specification—it is not difficult to write a program
that, for each symbolic command, carries out the following tasks (not necessarily in
that order):

®  Parse the symbolic command into its underlying fields.

®m  For each field, generate the corresponding bits in the machine language.

®m  Replace all symbolic references (if any) with numeric addresses of memory
locations.

®  Assemble the binary codes into a complete machine instruction.

Three of the above tasks (parsing, code generation, and final assembly) are rather
easy to implement. The fourth task—symbols handling—is more challenging, and
considered one of the main functions of the assembler. This function was described in
the previous section. The next two sections specify the Hack assembly language and
propose an assembler implementation for it, respectively.

6.2 Hack Assembly-to-Binary Translation Specification

The Hack assembly language and its equivalent binary representation were specified
in chapter 4. A compact and formal version of this language specification is repeated
here, for ease of reference. This specification can be viewed as the contract that Hack
assemblers must implement, one way or another.

6.2.1 Syntax Conventions and File Formats
File Names By convention, programs in binary machine code and in assembly

code are stored in text files with “hack” and ““asm’ extensions, respectively. Thus, a
Prog.asm file is translated by the assembler into a Prog.hack file.
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Binary Code (.hack) Files A binary code file is composed of text lines. Each line is
a sequence of 16 “0”” and “1” ASCII characters, coding a single 16-bit machine lan-
guage instruction. Taken together, all the lines in the file represent a machine lan-
guage program. When a machine language program is loaded into the computer’s
instruction memory, the binary code represented by the file’s nth line is stored in ad-
dress n of the instruction memory (the count of both program lines and memory
addresses starts at 0).

Assembly Language (.asm) Files An assembly language file is composed of text
lines, each representing either an instruction or a symbol declaration:

®  [nstruction: an A-instruction or a C-instruction, described in section 6.2.2.

®  (Symbol): This pseudo-command binds the Symbol to the memory location
into which the next command in the program will be stored. It is called “pseudo-
command” since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)
Constants and Symbols Constants must be non-negative and are written in decimal

notation. A user-defined symbol can be any sequence of letters, digits, underscore (_),
dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is
considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The
rest (user-defined labels and variable names) is case sensitive. The convention is to
use uppercase for labels and lowercase for variable names.

6.2.2 Instructions

The Hack machine language consists of two instruction types called addressing in-

struction (A-instruction) and compute instruction (C-instruction). The instruction
format is as follows.
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A-instruction: @uvalue // Where value is either a non-negative decimal number
// or a symbol referring to such number.

value (?/ =0orl)

Binary: |0 v v v v v Vv Vv v v vV Vv v VvV Vv v

C-instruction:  dest=comp,jump // Either the dest or jump fields may be empty.
/] If dest is empty, the “=""is omitted,;
/] If jump is empty, the “;” is omitted.
co:lnp dest julmp

l
| i [ |
Binary: |1 1 1 a cl c2 c3 c4 c5 c6 dl d2 d3 j1 j2 33

The translation of each of the three fields comp, dest, jump to their binary forms is
specified in the following three tables.

comp comp
(when a=0) cl c2 c3 c4 c5 cé6 (when a=1)
0 1 0 1 o0 1 0
1 11 1 1 1 1
-1 11 1 0 1 o0
D 6o o 1 1 o0 o0
A 11 0 0 0 O M
!D 6o 0 1 1 o0 1
A 11 0 0 0 1 M
-D o o 1 1 1 1
-A 11 0 o0 1 1 -M
D+1 o 1 1 1 1 1
A+l 11 o0 1 1 1 M+1
D-1 o o0 1 1 1 o0
A-1 11 0 o0 1 O M-1
D+A 6o 0o o0 o 1 o D+M
D-A 6o 1 o0 o0 1 1 D-M
A-D 6o o o 1 1 1 M-D
D&A 6o 0 o0 o0 o0 o0 D&M
D|A 6 1 o0 1 o0 1 D|M
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dest

dl d2 d3

null
M

D

MD

A

AM
AD
AMD

H B B P O O O O

= B O O B B O O
= O B O B O+ O

6.2.3 Symbols

.
N

Jjump j1 j3
null
JGT
JEQ
JGE
JLT
JNE
JLE
JMP

= B B P O O O O
H O O B B O O
= O KB O B O+~ O

Hack assembly commands can refer to memory locations (addresses) using
either constants or symbols. Symbols in assembly programs arise from three

sources.

Predefined Symbols Any Hack assembly program is allowed to use the following
predefined symbols.

Label RAM address (hexa)
SP 0 0x0000
LCL 1 0x0001
ARG 2 0x0002
THIS 3 0x0003
THAT 4 0x0004
RO-R15 0-15 0x0000-f
SCREEN 16384 0x4000
KBD 24576 0x6000

Note that each one of the top five RAM locations can be referred to using two
predefined symbols. For example, either R2 or ARG can be used to refer to

RAM[2).

Label Symbols

The pseudo-command ( xxx) defines the symbol xxx to refer to the

instruction memory location holding the next command in the program. A label can
be defined only once and can be used anywhere in the assembly program, even before

the line in which it is defined.
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Variable Symbols Any symbol xxx appearing in an assembly program that is
not predefined and is not defined elsewhere using the (Xxx) command is treated as
a variable. Variables are mapped to consecutive memory locations as they are first
encountered, starting at RAM address 16 (0x0010).

6.2.4 Example

Chapter 4 presented a program that sums up the integers 1 to 100. Figure 6.2 repeats
this example, showing both its assembly and binary versions.

Assembly code (Prog.asm) Binary code (Prog.hack)

Assembler

Figure 6.2 Assembly and binary representations of the same program.
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6.3 Implementation

The Hack assembler reads as input a text file named Prog.asm, containing a Hack
assembly program, and produces as output a text file named Prog.hack, contain-
ing the translated Hack machine code. The name of the input file is supplied to the
assembler as a command line argument:

prompt> Assembler Prog.asm

The translation of each individual assembly command to its equivalent binary in-
struction is direct and one-to-one. Each command is translated separately. In partic-
ular, each mnemonic component (field) of the assembly command is translated into
its corresponding bit code according to the tables in section 6.2.2, and each symbol in
the command is resolved to its numeric address as specified in section 6.2.3.

We propose an assembler implementation based on four modules: a Parser module
that parses the input, a Code module that provides the binary codes of all the as-
sembly mnemonics, a SymbolTable module that handles symbols, and a main pro-
gram that drives the entire translation process.

A Note about API Notation The assembler development is the first in a series of
five software construction projects that build our hierarchy of translators (assembler,
virtual machine, and compiler). Since readers can develop these projects in the pro-
gramming language of their choice, we base our proposed implementation guidelines
on language independent APIs. A typical project API describes several modules, each
containing one or more routines. In object-oriented languages like Java, C++, and
C#, a module usually corresponds to a class, and a routine usually corresponds to
a method. In procedural languages, routines correspond to functions, subroutines,
or procedures, and modules correspond to collections of routines that handle related
data. In some languages (e.g., Modula-2) a module may be expressed explicitly, in
others implicitly (e.g., a file in the C language), and in others (e.g., Pascal) it will
have no corresponding language construct, and will just be a conceptual grouping of
routines.

6.3.1 The Parser Module

The main function of the parser is to break each assembly command into its under-
lying components (fields and symbols). The API is as follows.
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Parser: Encapsulates access to the input code. Reads an assembly language com-
mand, parses it, and provides convenient access to the command’s components
(fields and symbols). In addition, removes all white space and comments.

Routine Arguments Returns Function

Constructor/ Input file/ — Opens the input file/stream and

initializer stream gets ready to parse it.

hasMoreCommands — Boolean Are there more commands in the
input?

advance — — Reads the next command from

the input and makes it the current
command. Should be called only

if hasMoreCommands () is true.
Initially there is no current command.

commandType — A coMMAND, Returns the type of the current

C_COMMAND, command:

L_COMMAND ® A COMMAND for @Xxxx where
xxx is either a symbol or a
decimal number
®  C_COMMAND for
dest=comp; jump
® I COMMAND (actually, pseudo-
command) for (Xxx) where Xxx
is a symbol.

symbol — string Returns the symbol or decimal
xxx of the current command
@xxx or (Xxx). Should be called
only when commandType () is
A COMMAND oOr L_COMMAND.

dest — string Returns the dest mnemonic in
the current C-command (8 possi-
bilities). Should be called only
when commandType () iS C_COMMAND.
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Routine Arguments Returns Function

comp — string Returns the comp mnemonic in
the current C-command (28 pos-
sibilities). Should be called only
when commandType () is
C_COMMAND.

jump — string Returns the jump mnemonic in

the current C-command (8 pos-
sibilities). Should be called only
when commandType () is
C_COMMAND.

6.3.2 The Code Module

Code: Translates Hack assembly language mnemonics into binary codes.

Routine Arguments Returns Function

dest mnemonic (string) 3 bits Returns the binary code of the
dest mnemonic.

comp mnemonic (string) 7 bits Returns the binary code of the
comp mnemonic.

jump mnemonic (string) 3 bits Returns the binary code of the
jump mnemonic.

6.3.3 Assembler for Programs with No Symbols

We suggest building the assembler in two stages. In the first stage, write an assembler
that translates assembly programs without symbols. This can be done using the
Parser and Code modules just described. In the second stage, extend the assembler
with symbol handling capabilities, as we explain in the next section.

The contract for the first symbol-less stage is that the input Prog.asm program
contains no symbols. This means that (a) in all address commands of type @xxx the
Xxx constants are decimal numbers and not symbols, and (b) the input file contains
no label commands, namely, no commands of type (Xxx).
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The overall symbol-less assembler program can now be implemented as follows.
First, the program opens an output file named Prog.hack. Next, the program
marches through the lines (assembly instructions) in the supplied Prog.asm file.
For each C-instruction, the program concatenates the translated binary codes of the
instruction fields into a single 16-bit word. Next, the program writes this word into
the Prog.hack file. For each A-instruction of type @xxx, the program translates the
decimal constant returned by the parser into its binary representation and writes the
resulting 16-bit word into the Prog.hack file.

6.3.4 The SymbolTable Module

Since Hack instructions can contain symbols, the symbols must be resolved into
actual addresses as part of the translation process. The assembler deals with this task
using a symbol table, designed to create and maintain the correspondence between
symbols and their meaning (in Hack’s case, RAM and ROM addresses). A natural
data structure for representing such a relationship is the classical hash table. In most
programming languages, such a data structure is available as part of a standard
library, and thus there is no need to develop it from scratch. We propose the follow-
ing APL

SymbolTable: Keeps a correspondence between symbolic labels and numeric
addresses.

Routine Arguments Returns Function
Constructor — — Creates a new empty symbol
table.
addEntry symbol (string), — Adds the pair (symbol,
address (int) address) to the table.
contains symbol (string) Boolean Does the symbol table contain

the given symbol?

GetAddress symbol (string) int Returns the address associated
with the symbol.

6.3.5 Assembler for Programs with Symbols

Assembly programs are allowed to use symbolic labels (destinations of gofo com-
mands) before the symbols are defined. This convention makes the life of assembly
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programmers easier and that of assembler developers harder. A common solution
to this complication is to write a two-pass assembler that reads the code twice, from
start to end. In the first pass, the assembler builds the symbol table and generates
no code. In the second pass, all the label symbols encountered in the program have
already been bound to memory locations and recorded in the symbol table. Thus, the
assembler can replace each symbol with its corresponding meaning (numeric address)
and generate the final binary code.

Recall that there are three types of symbols in the Hack language: predefined
symbols, labels, and variables. The symbol table should contain and handle all these
symbols, as follows.

Initialization Initialize the symbol table with all the predefined symbols and their
pre-allocated RAM addresses, according to section 6.2.3.

First Pass Go through the entire assembly program, line by line, and build the
symbol table without generating any code. As you march through the program lines,
keep a running number recording the ROM address into which the current command
will be eventually loaded. This number starts at 0 and is incremented by 1 whenever
a C-instruction or an A-instruction is encountered, but does not change when a label
pseudocommand or a comment is encountered. Each time a pseudocommand ( Xxx)
is encountered, add a new entry to the symbol table, associating xxx with the ROM
address that will eventually store the next command in the program. This pass results
in entering all the program’s labels along with their ROM addresses into the symbol
table. The program’s variables are handled in the second pass.

Second Pass Now go again through the entire program, and parse each line. Each
time a symbolic A-instruction is encountered, namely, @Xxx where Xxx is a symbol
and not a number, look up Xxx in the symbol table. If the symbol is found in the
table, replace it with its numeric meaning and complete the command’s translation.
If the symbol is not found in the table, then it must represent a new variable. To
handle it, add the pair (xxx, n) to the symbol table, where n is the next available
RAM address, and complete the command’s translation. The allocated RAM
addresses are consecutive numbers, starting at address 16 (just after the addresses
allocated to the predefined symbols).
This completes the assembler’s implementation.
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6.4 Perspective

Like most assemblers, the Hack assembler is a relatively simple program, dealing
mainly with text processing. Naturally, assemblers for richer machine languages are
more complex. Also, some assemblers feature more sophisticated symbol handling
capabilities not found in Hack. For example, the assembler may allow programmers
to explicitly associate symbols with particular data addresses, to perform “constant
arithmetic” on symbols (e.g., to use table+5 to refer to the fifth memory location
after the address referred to by table), and so on. Additionally, many assemblers
are capable of handling macro commands. A macro command is simply a sequence of
machine instructions that has a name. For example, our assembler can be extended
to translate an agreed-upon macro-command, say D=M[xxx], into the two instruc-
tions @xxx followed immediately by D=M (xxx being an address). Clearly, such
macro commands can considerably simplify the programming of commonly occur-
ring operations, at a low translation cost.

We note in closing that stand-alone assemblers are rarely used in practice.
First, assembly programs are rarely written by humans, but rather by compilers. And
a compiler—being an automaton—does not have to bother to generate symbolic
commands, since it may be more convenient to directly produce binary machine
code. On the other hand, many high-level language compilers allow programmers to
embed segments of assembly language code within high-level programs. This capa-
bility, which is rather common in C language compilers, gives the programmer direct
control of the underlying hardware, for optimization.

6.5 Project

Objective Develop an assembler that translates programs written in Hack assembly
language into the binary code understood by the Hack hardware platform. The
assembler must implement the translation specification described in section 6.2.

Resources The only tool needed for completing this project is the program-
ming language in which you will implement your assembler. You may also find
the following two tools useful: the assembler and CPU emulator supplied with the
book. These tools allow you to experiment with a working assembler before you
set out to build one yourself. In addition, the supplied assembler provides a visual
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line-by-line translation GUI and allows online code comparisons with the outputs
that your assembler will generate. For more information about these capabilities,
refer to the assembler tutorial (part of the book’s software suite).

Contract When loaded into your assembler, a Prog.asm file containing a valid
Hack assembly language program should be translated into the correct Hack binary
code and stored in a Prog.hack file. The output produced by your assembler must
be identical to the output produced by the assembler supplied with the book.

Building Plan We suggest building the assembler in two stages. First write a
symbol-less assembler, namely, an assembler that can only translate programs that
contain no symbols. Then extend your assembler with symbol handling capabilities.
The test programs that we supply here come in two such versions (without and with
symbols), to help you test your assembler incrementally.

Test Programs Each test program except the first one comes in two versions:
ProgL.asm is symbol-less, and Prog.asm is with symbols.

Add:  Adds the constants 2 and 3 and puts the result in RO.
Max: Computes max(R0,R1) and puts the result in R2.

Rect:  Draws a rectangle at the top left corner of the screen. The rectangle is 16
pixels wide and RO pixels high.

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen’s
“walls.” The player attempts to hit the ball with a bat by pressing the left and right
arrow keys. For every successful hit, the player gains one point and the bat shrinks a
little to make the game harder. If the player misses the ball, the game is over. To quit
the game, press ESC.

The Pong program was written in the Jack programming language (chapter 9)
and translated into the supplied assembly program by the Jack compiler (chap-
ters 10-11). Although the original Jack program is only about 300 lines of code,
the executable Pong application is about 20,000 lines of binary code, most of
which being the Jack operating system (chapter 12). Running this interactive pro-
gram in the CPU emulator is a slow affair, so don’t expect a high-powered Pong
game. This slowness is actually a virtue, since it enables your eye to track the
graphical behavior of the program. In future projects in the book, this game will run
much faster.
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Steps Write and test your assembler program in the two stages described
previously. You may use the assembler supplied with the book to compare the out-
put of your assembler to the correct output. This testing procedure is described
next. For more information about the supplied assembler, refer to the assembler
tutorial.

The Supplied Assembler The practice of using the supplied assembler (which pro-
duces correct binary code) to test another assembler (which is not necessarily correct)
is illustrated in figure 6.3. Let Prog.asm be some program written in Hack assembly.
Suppose that we translate this program using the supplied assembler, producing

£ Assembler - G:'examples'Rect.asm & IEI | x|
Fle Run Help
@ . > ’ u c E — Controls for loading files,
M— translating to binary, and
saving the translated file
Source Destination Comparison
\+ Draws a6 pixels wide by Bo | (000000000000000 0000000000000000
wrpixels high rectangle at the 1111110000010000 1111110000010000
s screens top LeET corner 0000000000010111 0000000000010111
@ 1110001100000110 1110001100000110
D=l 0000000000010000 0000000000010000
(@INFINITE_LOOP 1110001100001000 1110001100001000
D; JLE o 000 o
@counted 11101100000 11101 10000010000
HD source file translated wo] COMpare
(@SCREEN (assembly) 111000110000 i@ (bmary) 11son01100001000 |
D=i 100013
(@address 11111 10000100000 1111110000100000
H-D 1110111010001000 1110111010001000
(LOOF) 0000000000010001 00000000001 10001
@address 1111110000010000
AN D000000000100000
M=t 1110000010010000
(@address 110001
D=l ; 1110001100001000
@t The translated binary P
D=D+h code happens to d1sagree 1111110010011000
(@address : D000000000001010
with th i
H-D th the compare file 1110001100000001
(@counter 10411
MD=M-1 1110101010000111
@Loor
D; IGT
(INFINITE_LOOF)
(@INFINITE_LOOP I
o; TP pa
I N o | 0| T [ |

[Comparison failure

Figure 6.3 Using the supplied assembler to test the code generated by another assembler.
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a binary file called Prog.hack. Next, we use another assembler (e.g., the one that
you wrote) to translate the same program into another file, say Progl.hack. Now, if
the latter assembler is working correctly, it follows that Prog.hack = Progl.hack.
Thus, one way to test a newly written assembler is to load Prog.asm into the sup-
plied assembler program, load Progl.hack as a compare file, then translate and
compare the two binary files (see figure 6.3). If the comparison fails, the assembler
that produced Progl.hack must be buggy; otherwise, it may be error-free.



Virtual Machine I: Stack Arithmetic

Programmers are creators of universes for which they alone are responsible. Universes of virtu-
ally unlimited complexity can be created in the form of computer programs.
—Joseph Weizenbaum, Computer Power and Human Reason (1974)

This chapter describes the first steps toward building a compiler for a typical object-
based high-level language. We will approach this substantial task in two stages, each
spanning two chapters. High-level programs will first be translated into an interme-
diate code (chapters 10—11), and the intermediate code will then be translated into
machine language (chapters 7-8). This two-tier translation model is a rather old idea
that goes back to the 1970s. Recently, it made a significant comeback following its
adoption by modern languages like Java and C#.

The basic idea is as follows: Instead of running on a real platform, the intermedi-
ate code is designed to run on a Virtual Machine. The VM is an abstract computer
that does not exist for real, but can rather be realized on other computer platforms.
There are many reasons why this idea makes sense, one of which being code trans-
portability. Since the VM may be implemented with relative ease on multiple target
platforms, VM-based software can run on many processors and operating systems
without having to modify the original source code. The VM implementations can be
realized in several ways, by software interpreters, by special-purpose hardware, or by
translating the VM programs into the machine language of the target platform.

This chapter presents a typical VM architecture, modeled after the Java Virtual
Machine (JVM) paradigm. As usual, we focus on two perspectives. First, we moti-
vate and specify the VM abstraction. Next, we implement it over the Hack platform.
Our implementation entails writing a program called VM translator, designed to
translate VM code into Hack assembly code. The software suite that comes with the
book illustrates yet another implementation vehicle, called VM emulator. This pro-
gram implements the VM by emulating it on a standard personal computer using
Java.
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A virtual machine model typically has a language, in which one can write VM
programs. The VM language that we present here consists of four types of com-
mands: arithmetic, memory access, program flow, and subroutine calling commands.
We split the implementation of this language into two parts, each covered in a sepa-
rate chapter and project. In this chapter we build a basic VM translator, capable
of translating the VM’s arithmetic and memory access commands into machine lan-
guage. In the next chapter we extend the basic translator with program flow and
subroutine calling functionality. The result is a full-scale virtual machine that will
serve as the backend of the compiler that we will build in chapters 10—11.

The virtual machine that emerges from this effort illustrates many important ideas
in computer science. First, the notion of having one computer emulating another is
a fundamental idea in the field, tracing back to Alan Turing in the 1930s. Over the
years it had many practical implications, for example, using an emulator of an old
generation computer running on a new platform in order to achieve upward code
compatibility. More recently, the virtual machine model became the centerpiece
of two competing mainstreams—the Java architecture and the .NET infrastructure.
These software environments are rather complex, and one way to gain an inside view
of their underlying structure is to build a simple version of their VM cores, as we do
here.

Another important topic embedded in this chapter is stack processing. The stack
is a fundamental and elegant data structure that comes to play in many computer
systems and algorithms. Since the VM presented in this chapter is stack-based, it
provides a working example of this remarkably versatile data structure.

7.1 Background
7.1.1 The Virtual Machine Paradigm

Before a high-level program can run on a target computer, it must be translated into
the computer’s machine language. This translation—known as compilation—is a
rather complex process. Normally, a separate compiler is written specifically for any
given pair of high-level language and target machine language. This leads to a pro-
liferation of many different compilers, each depending on every detail of both its
source and destination languages. One way to decouple this dependency is to break
the overall compilation process into two nearly separate stages. In the first stage,
the high-level program is parsed and its commands are translated into intermediate
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processing steps—steps that are neither “high” nor “low.” In the second stage, the
intermediate steps are translated further into the machine language of the target
hardware.

This decomposition is very appealing from a software engineering perspective: The
first stage depends only on the specifics of the source high-level language, and the
second stage only on the specifics of the target machine language. Of course, the in-
terface between the two compilation stages—the exact definition of the intermediate
processing steps—must be carefully designed. In fact, this interface is sufficiently im-
portant to merit its own definition as a stand-alone language of an abstract machine.
Specifically, one can formulate a virtual machine whose instructions are the interme-
diate processing steps into which high-level commands are decomposed. The com-
piler that was formerly a single monolithic program is now split into two separate
programs. The first program, still termed compiler, translates the high-level code into
intermediate VM instructions, while the second program translates this VM code
into the machine language of the target platform.

This two-stage compilation model has been used—one way or another—in many
compiler construction projects. Some developers went as far as defining a formal and
stand-alone virtual machine language, most notably the p-code generated by several
Pascal compilers in the 1970s. Java compilers are also two-tiered, generating a byte-
code language that runs on the JVM virtual machine (also called the Java Runtime
Environment). More recently, the approach has been adopted by the .NET infra-
structure. In particular, .NET requires compilers to generate code written in an
intermediate language (IL) that runs on a virtual machine called CLR (Common
Language Runtime).

Indeed, the notion of an explicit and formal virtual machine language has several
practical advantages. First, compilers for different target platforms can be obtained
with relative ease by replacing only the virtual machine implementation (sometimes
called the compiler’s backend). This, in turn, allows the VM code to become trans-
portable across different hardware platforms, permitting a range of implementation
trade-offs among code efficiency, hardware cost, and programming effort. Second,
compilers for many languages can share the same VM backend, allowing code
sharing and language interoperability. For example, one high-level language may be
good at scientific calculations, while another may excel in handling the user interface.
If both languages compile into a common VM layer, it is rather natural to have
routines in one language call routines in the other, using an agreed-upon invocation
syntax.

Another benefit of the virtual machine approach is modularity. Every improve-
ment in the efficiency of the VM implementation is immediately inherited by all the



124

Chapter 7

compilers above it. Likewise, every new digital device or appliance that is equipped
with a VM implementation can immediately benefit from a huge base of available
software, as seen in figure 7.1.

7.1.2 The Stack Machine Model

Like most programming languages, the VM language consists of arithmetic, memory
access, program flow, and subroutine calling operations. There are several possible
software paradigms on which to base such a language implementation. One of the
key questions regarding this choice is where will the operands and the results of the
VM operations reside? Perhaps the cleanest solution is to put them on a stack data
structure.

In a stack machine model, arithmetic commands pop their operands from the
top of the stack and push their results back onto the top of the stack. Other com-
mands transfer data items from the stack’s top to designated memory locations, and
vice versa. As it turns out, these simple stack operations can be used to implement
the evaluation of any arithmetic or logical expression. Further, any program, written
in any programming language, can be translated into an equivalent stack machine
program. One such stack machine model is used in the Java Virtual Machine as well
as in the VM described and built in what follows.

Elementary Stack Operations A stack is an abstract data structure that supports
two basic operations: push and pop. The push operation adds an element to the top
of the stack; the element that was previously on top is pushed below the newly added
element. The pop operation retrieves and removes the top element; the element just
below it moves up to the top position. Thus the stack implements a last-in-first-out
(LIFO) storage model, illustrated in figure 7.2.

We see that stack access differs from conventional memory access in several
respects. First, the stack is accessible only from the top, one item at a time. Second,
reading the stack is a lossy operation: The only way to retrieve the top value is
to remove it from the stack. In contrast, the act of reading a value from a regular
memory location has no impact on the memory’s state. Finally, writing an item onto
the stack adds it to the stack’s top, without changing the rest of the stack. In con-
trast, writing an item into a regular memory location is a lossy operation, since it
overrides the location’s previous value.

The stack data structure can be implemented in several different ways. The sim-
plest approach is to keep an array, say stack, and a stack pointer variable, say sp,
that points to the available location just above the topmost element. The push x
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Figure 7.1 The virtual machine paradigm. Once a high-level program is compiled into VM
code, the program can run on any hardware platform equipped with a suitable VM imple-
mentation. In this chapter we start building the VM implementation on the Hack platform and
use a VM emulator like the one depicted on the right.
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Figure 7.2 Stack processing example, illustrating the two elementary operations push and
pop. Following convention, the stack is drawn upside down, as if it grows downward. The
location just after the top position is always referred to by a special pointer called sp, or stack
pointer. The labels a and b refer to two arbitrary memory addresses.

command is then implemented by storing x at the array entry pointed by sp and then
incrementing sp (i.e., stack[spl=x; sp=sp+1). The pop operation is implemented
by first decrementing sp and then returning the value stored in the top position (i.e.,
sp=sp-1; return stack|[ sp]).

As usual in computer science, simplicity and elegance imply power of expres-
sion. The simple stack model is a versatile data structure that comes to play in many
computer systems and algorithms. In the virtual machine architecture that we build
here, it serves two key purposes. First, it is used for handling all the arithmetic and
logical operations of the VM. Second, it facilitates subroutine calls and the asso-
ciated memory allocation—the subjects of the next chapter.

Stack Arithmetic Stack-based arithmetic is a simple matter: the operands are
popped from the stack, the required operation is performed on them, and the result
is pushed back onto the stack. For example, here is how addition is handled:
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: 0
5 SP—»

The stack version of other operations (subtract, multiply, etc.) are precisely the
same. For example, consider the expression d=(2—x) * (y+5), taken from some high-
level program. The stack-based evaluation of this expression is shown in figure 7.3.

Stack-based evaluation of Boolean expressions has precisely the same flavor. For
example, consider the high-level command if (x<7) or (y=8) then.... The stack-
based evaluation of this expression is shown in figure 7.4.

The previous examples illustrate a general observation: any arithmetic and Boo-
lean expression—no matter how complex—can be systematically converted into,
and evaluated by, a sequence of simple operations on a stack. Thus, one can write a
compiler that translates high-level arithmetic and Boolean expressions into sequences
of stack commands, as we will do in chapters 10-11. We now turn to specify these
commands (section 7.2), and describe their implementation on the Hack platform
(section 7.3).

SP—»

7.2 VM Specification, Part I

7.2.1 General

The virtual machine is stack-based: all operations are done on a stack. It is also
function-based: a complete VM program is organized in program units called func-
tions, written in the VM language. Each function has its own stand-alone code and
is separately handled. The VM language has a single 16-bit data type that can be
used as an integer, a Boolean, or a pointer. The language consists of four types of
commands:

®  Arithmetic commands perform arithmetic and logical operations on the stack.

®  Memory access commands transfer data between the stack and virtual memory
segments.

®  Program flow commands facilitate conditional and unconditional branching
operations.

®  Function calling commands call functions and return from them.



128

Chapter 7

-3

SP—»
-3
14

SP—»

N

-3

) | g )

SP—»

) T =)

5
SP—»
Stack Memory
SP—»
X 5
y 9
d —42

Figure 7.3 Stack-based evaluation of arithmetic expressions. This example evaluates the
expression d = (2 — x) * (y + 5), assuming the initial memory state x =5,y = 9.
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Figure 7.4 Stack-based evaluation of logical expressions. This example evaluates the Boolean
expression (x < 7) or (y = 8), assuming the initial memory state x = 12, y = 8.

SP—»

Building a virtual machine is a complex undertaking, and so we divide it into two
stages. In this chapter we specify the arithmetic and memory access commands and
build a basic VM translator that implements them only. The next chapter specifies
the program flow and function calling commands and extends the basic translator
into a full-scale virtual machine implementation.

Program and Command Structure A VM program is a collection of one or more
files with a .vm extension, each consisting of one or more functions. From a compi-
lation standpoint, these constructs correspond, respectively, to the notions of pro-
gram, class, and method in an object-oriented language.



130

Chapter 7

Within a .vm file, each VM command appears in a separate line, and in one of the
following formats: command (e.g., add), command arg (e.g., goto loop), or command
argl arg2 (e.g., push local 3). The arguments are separated from each other and
from the command part by an arbitrary number of spaces. “//” comments can ap-
pear at the end of any line and are ignored. Blank lines are permitted and ignored.

7.2.2 Arithmetic and Logical Commands

The VM language features nine stack-oriented arithmetic and logical commands.
Seven of these commands are binary: They pop two items off the stack, compute a
binary function on them, and push the result back onto the stack. The remaining two
commands are unary: they pop a single item off the stack, compute a unary function
on it, and push the result back onto the stack. We see that each command has the net
impact of replacing its operand(s) with the command’s result, without affecting the
rest of the stack. Figure 7.5 gives the details.

Three of the commands listed in figure 7.5 (eq, gt, 1t) return Boolean values.
The VM represents true and false as —1 (minus one, 0xXFFFF) and 0 (zero, 0x0000),
respectively.

7.2.3 Memory Access Commands

So far in the chapter, memory access commands were illustrated using the pseudo-
commands pop and push x, where the symbol x referred to an individual location

Return value (after
Command popping the operand/s) Comment
add x+y Integer addition (2’s complement)
sub xX—y Integer subtraction  (2’s complement)
neg -y Arithmetic negation (2’s complement)
eq true if x = y, else false Equality Stack
gt true if x > y, else false Greater than
1t true if x < y, else false Less than
and x And y Bit-wise ¥
or xOry Bit-wise SP—»
not Not y Bit-wise

Figure 7.5 Arithmetic and logical stack commands.
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in some global memory. Yet formally, our VM manipulates eight separate virtual
memory segments, listed in figure 7.6.

Memory Access Commands All the memory segments are accessed by the same two

commands:

®  push segment index Push the value of segment|index] onto the stack.

" pop segment index Pop the top stack value and store it in segment|index].

Segment Purpose Comments
argument Stores the function’s Allocated dynamically by the VM
arguments. implementation when the function
is entered.
local Stores the function’s local Allocated dynamically by the VM
variables. implementation and initialized to
0’s when the function is entered.
static Stores static variables Allocated by the VM imp.
shared by all functions in for each .wvm file; shared by all
the same .vm file. functions in the .vm file.
constant Pseudo-segment that holds Emulated by the VM
all the constants in the implementation; Seen by all the
range 0...32767. functions in the program.
this General-purpose segments. Any VM function can use these
that Can be made to correspond segments to manipulate selected
to different areas in the areas on the heap.
heap. Serve various
programming needs.
pointer A two-entry segment that Any VM function can set pointer
holds the base addresses of 0 (or 1) to some address; this has
the this and that the effect of aligning the this (or
segments. that) segment to the heap area
beginning in that address.
temp Fixed eight-entry segment May be used by any VM function

that holds temporary
variables for general use.

for any purpose. Shared by all
functions in the program.

Figure 7.6 The memory segments seen by every VM function.



132

Chapter 7

Foo.vm Bar.vm
VM files
fl 2 8 fl | J (f = VM function)
VM
translator
4 \
| static | | static
|argument| |argument| |argument| |argument| |argument|
(one set of virtual
| local | | local | | local | | local local
memory segments
| this | | this | | this | | this this for each instance
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translator
[ Hack machine language code j

Figure 7.7 The virtual memory segments are maintained by the VM implementation.

Where segment is one of the eight segment names and index is a non-negative in-
teger. For example, push argument 2 followed by pop local 1 will store the value
of the function’s third argument in the function’s second local variable (each seg-
ment’s index starts at 0).

The relationship among VM files;, VM functions, and their respective virtual
memory segments is depicted in figure 7.7.

In addition to the eight memory segments, which are managed explicitly by
VM push and pop commands, the VM implementation manages two implicit
data structures called stack and heap. These data structures are never mentioned
directly, but their states change in the background, as a side effect of VM com-
mands.



133

Virtual Machine I: Stack Arithmetic

The Stack Consider the commands sequence push argument 2 and pop local 1,
mentioned before. The working memory of such VM operations is the stack. The
data value did not simply jump from one segment to another—it went through the
stack. Yet in spite of its central role in the VM architecture, the stack proper is never
mentioned in the VM language.

The Heap Another memory clement that exists in the VM’s background is the
heap. The heap is the name of the RAM area dedicated for storing objects and arrays
data. These objects and arrays can be manipulated by VM commands, as we will see
shortly.

7.2.4 Program Flow and Function Calling Commands

The VM features six additional commands that are discussed at length in the next
chapter. For completeness, these commands are listed here.

Program Flow Commands

label symbol // Label declaration
goto symbol // Unconditional branching
if-goto symbol [/ Conditional branching

Function Calling Commands
function functionName nLocals // Function declaration, specifying the
// number of the function’s local variables

call functionName nArgs // Function invocation, specifying the
// number of the function’s arguments

return // Transfer control back to the calling function

(In this list of commands, functionName is a symbol and nLocals and nArgs are non-
negative integers.)

7.2.5 Program Elements in the Jack-VM-Hack Platform
We end the first part of the VM specification with a top-down view of all the pro-

gram elements that emerge from the full compilation of a typical high-level program.
At the top of figure 7.8 we see a Jack program, consisting of two classes (Jack, a
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prog.hack

‘ Hack binary code Binary file

Figure 7.8 Program elements in the Jack-VM-Hack platform.

simple Java-like language, is described in chapter 9). Each Jack class consists of one
or more methods. When the Jack compiler is applied to a directory that includes n
class files, it produces n VM files (in the same directory). Each Jack method xxx
within a class vyy is translated into one VM function called Yyy.xxx within the
corresponding VM file.

Next, the figure shows how the VM translator can be applied to the directory in
which the VM files reside, generating a single assembly program. This assembly
program does two main things. First, it emulates the virtual memory segments of
each VM function and file, as well as the implicit stack. Second, it effects the VM
commands on the target platform. This is done by manipulating the emulated
VM data structures using machine language instructions—those translated from the
VM commands. If all works well, that is, if the compiler and the VM translator and
the assembler are implemented correctly, the target platform will end up effecting the
behavior mandated by the original Jack program.
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7.2.6 VM Programming Examples

We end this section by illustrating how the VM abstraction can be used to express
typical programming tasks found in high-level programs. We give three examples: (i)
a typical arithmetic task, (ii) typical array handling, and (iii) typical object handling.
These examples are irrelevant to the VM implementation, and in fact the entire sec-
tion 7.2.6 can be skipped without losing the thread of the chapter.

The main purpose of this section is to illustrate how the compiler developed in
chapters 10—11 will use the VM abstraction to translate high-level programs into VM
code. Indeed, VM programs are rarely written by human programmers, but rather by
compilers. Therefore, it is instructive to begin each example with a high-level code
fragment, then show its equivalent representation using VM code. We use a C-style
syntax for all the high-level examples.

A Typical Arithmetic Task Consider the multiplication algorithm shown at the top
of figure 7.9. How should we (or more likely, the compiler) express this algorithm in
the VM language? First, high-level structures like for and while must be rewritten
using the VM’s simple “goto logic.” In a similar fashion, high-level arithmetic and
Boolean operations must be expressed using stack-oriented commands. The resulting
code is shown in figure 7.9. (The exact semantics of the VM commands function,
label, goto, if-goto, and return are described in chapter 8, but their intuitive
meaning is self-explanatory.)

Let us focus on the virtual segments depicted at the bottom of figure 7.9. We see
that when a VM function starts running, it assumes that (i) the stack is empty, (ii) the
argument values on which it is supposed to operate are located in the argument
segment, and (iii) the local variables that it is supposed to use are initialized to 0 and
located in the local segment.

Let us now focus on the VM representation of the algorithm. Recall that VM
commands cannot use symbolic argument and variable names—they are limited to
making (segment index) references only. However, the translation from the former
to the latter is straightforward. All we have to do is map x, y, sum and j on argu-
ment 0, argument 1, local 0 and local 1, respectively, and replace all their sym-
bolic occurrences in the pseudo code with corresponding {segment index) references.

To sum up, when a VM function starts running, it assumes that it is surrounded
by a private world, all of its own, consisting of initialized argument and local seg-
ments and an empty stack, waiting to be manipulated by its commands. The agent
responsible for staging this virtual worldview for every VM function just before it
starts running is the VM implementation, as we will see in the next chapter.
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First approximation Pseudo VM code Final VM code

Figure 7.9 VM programming example.
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Just after mult(7,3) is entered: Just after mult(7,3) returns:
Stack argument local Stack
SP—» 0 7 0 0| sum 21
' SP—»
a1 1 3|Y 1 0| )
4

(The symbols x, y, sum, and j are not part of the VM program and are shown here only for ease of
reference.)

Figure 7.9 (continued)

Array Handling An array is an indexed collection of objects. Suppose that a high-
level program has created an array of ten integers called bar and filled it with some
ten numbers. Let us assume that the array’s base has been mapped (behind the scene)
on RAM address 4315. Suppose now that the high-level program wants to execute
the command bar[2]=19. How can we implement this operation at the VM level?

In the C language, such an operation can be also specified as *(bar+2)=19,
meaning “‘set the RAM location whose address is (bar+2) to 19.” As shown in figure
7.10, this operation lends itself perfectly well to the VM language.

It remains to be seen, of course, how a high-level command like bar[2]=19 is
translated in the first place into the VM code shown in figure 7.10. This transforma-
tion is described in section 11.1.1, when we discuss the code generation features of
the compiler.

Object Handling High-level programmers view objects as entities that encapsulate
data (organized as fields, or properties) and relevant code (organized as methods). Yet
physically speaking, the data of each object instance is serialized on the RAM as a
list of numbers representing the object’s field values. Thus the low-level handling of
objects is quite similar to that of arrays.

For example, consider an animation program designed to juggle some balls on
the screen. Suppose that each Ball object is characterized by the integer fields x,
y, radius, and color. Let us assume that the program has created one such Ball
object and called it b. What will be the internal representation of this object in the
computer?

Like all other object instances, it will be stored in the RAM. In particular, when-
ever a program creates a new object, the compiler computes the object’s size in terms
of words and the operating system finds and allocates enough RAM space to store
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(Actual RAM locations of program variables are
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VM code

Virtual memory segments Virtual memory segments
just before the bar[2]=19 operation: just after the bar[2]=19 operation:
local pointer that local pointer that (that 0
ol 2315] o 0 of 4315] of 4317] 0 19 is now
1 1 1 1 1 1 aligned with

RAM[4317])

Figure 7.10 VM-based array manipulation using the pointer and that segments.
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it (the exact details of this operation are discussed in chapter 11). For now, let us
assume that our b object has been allocated RAM addresses 3012 to 3015, as shown
in figure 7.11.

Suppose now that a certain method in the high-level program, say resize, takes
a Ball object and an integer r as arguments, and, among other things, sets the ball’s
radius to r. The VM representation of this logic is shown in figure 7.11.

When we set pointer 0 to the value of argument 0, we are effectively setting the
base of the virtual this segment to the object’s base address. From this point on,
VM commands can access any field in the object using the virtual memory segment
this and an index relative to the object’s base-address in memory.

But how did the compiler translate b.radius=17 into the VM code shown in fig-
ure 7.11? And how did the compiler know that the radius field of the object corre-
sponds to the third field in its actual representation? We return to these questions in
section 11.1.1, when we discuss the code generation features of the compiler.

7.3 Implementation

The virtual machine that was described up to this point is an abstract artifact. If we
want to use it for real, we must implement it on a real platform. Building such a
VM implementation consists of two conceptual tasks. First, we have to emulate the
VM world on the target platform. In particular, each data structure mentioned in
the VM specification, namely, the stack and the virtual memory segments, must be
represented in some way by the target platform. Second, each VM command must be
translated into a series of instructions that effect the command’s semantics on the
target platform.

This section describes how to implement the VM specification (section 7.2) on
the Hack platform. We start by defining a “standard mapping” from VM ele-
ments and operations to the Hack hardware and machine language. Next, we suggest
guidelines for designing the software that achieves this mapping. In what follows, we
will refer to this software using the terms VM implementation or VM translator
interchangeably.

7.3.1 Standard VM Mapping on the Hack Platform, Part I

If you reread the virtual machine specification given so far, you will realize that
it contains no assumption whatsoever about the architecture on which the VM can



140 Chapter 7

High-level program view RAM view
X: 120 0
b v 80 folloylvir;g e
object ) s 50 compifation 412 | 3012| b
color: 9

3012 120
3013 80 b

(Actual RAM locations of program variables 3014 50 object

are run-time dependent, and thus the addresses 3015 3

shown here are arbitrary examples.)

VM code

Virtual memory segments just before Virtual memory segments just after
the operation b.radius=17: the operation b.radius=17:
argument pointer this argument pointer this
12
0 3012 0 0 (1) 3017 0 3012 :) 123 (this 0
1 17| 1 1 is now
2 171 | aligned with
3 3| | RAM[3012])

Figure 7.11 VM-based object manipulation using the pointer and this segments.
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be implemented. When it comes to virtual machines, this platform independence is
the whole point: You don’t want to commit to any one hardware platform, since you
want your machine to potentially run on all of them, including those that were not
built yet.

It follows that the VM designer can principally let programmers implement the
VM on target platforms in any way they see fit. However, it is usually recommended
that some guidelines be provided as to how the VM should map on the target plat-
form, rather than leaving these decisions completely to the implementer’s discretion.
These guidelines, called standard mapping, are provided for two reasons. First, they
entail a public contract that regulates how VM-based programs can interact with
programs produced by compilers that don’t use this VM (e.g., compilers that pro-
duce binary code directly). Second, we wish to allow the developers of the VM
implementation to run standardized tests, namely, tests that conform to the standard
mapping. This way, the tests and the software can be written by different people,
which is always recommended. With that in mind, the remainder of this section
specifies the standard mapping of the VM on a familiar hardware platform: the Hack
computer.

VM to Hack Translation Recall that a VM program is a collection of one or more
.vm files, each containing one or more VM functions, each being a sequence of VM
commands. The VM translator takes a collection of . vm files as input and produces a
single Hack assembly language .asm file as output (see figure 7.7). Each VM com-
mand is translated by the VM translator into Hack assembly code. The order of the
functions within the .vm files does not matter.

RAM Usage The data memory of the Hack computer consists of 32K 16-bit words.
The first 16K serve as general-purpose RAM. The next 16K contain memory maps
of I/O devices. The VM implementation should use this space as follows:

RAM addresses Usage

0-15 Sixteen virtual registers, usage described below
16-255 Static variables (of all the VM functions in the VM program)
2562047 Stack
2048-16483 Heap (used to store objects and arrays)
1638424575 Memory mapped I/O

Recall that according to the Hack Machine Language Specification, RAM addresses
0 to 15 can be referred to by any assembly program using the symbols RO to R15,
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respectively. In addition, the specification states that assembly programs can refer
to RAM addresses 0 to 4 (i.e., RO to R4) using the symbols SP, LCL, ARG, THIS, and
THAT. This convention was introduced into the assembly language with foresight, in
order to promote readable VM implementations. The expected use of these registers
in the VM context is described as follows:

Register Name Usage

RAM]0] SP Stack pointer: points to the next topmost location in
the stack;

RAM[1] LCL Points to the base of the current VM function’s
local segment;

RAM]2] ARG Points to the base of the current VM function’s
argument segment;

RAM[3] THIS Points to the base of the current this segment
(within the heap);

RAM[4] THAT Points to the base of the current that segment
(within the heap);

RAM[5-12] Holds the contents of the temp segment;

RAM][13-15] Can be used by the VM implementation as general-
purpose registers.

Memory Segments Mapping

local, argument, this, that: Each one of these segments is mapped directly
on the RAM, and its location is maintained by keeping its physical base address in a
dedicated register (LCL, ARG, THIS, and THAT, respectively). Thus any access to the
ith entry of any one of these segments should be translated to assembly code that
accesses address (base + i) in the RAM, where base is the current value stored in the
register dedicated to the respective segment.

pointer, temp: These segments are each mapped directly onto a fixed area in the
RAM. The pointer segment is mapped on RAM locations 3-4 (also called THIS
and THAT) and the temp segment on locations 5-12 (also called R5, R6,..., R12).
Thus access to pointer i should be translated to assembly code that accesses RAM
location 3 + i, and access to temp i should be translated to assembly code that
accesses RAM location 5 + i.

constant: This segment is truly virtual, as it does not occupy any physical space
on the target architecture. Instead, the VM implementation handles any VM access
to {constant iy by simply supplying the constant i.
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static: According to the Hack machine language specification, when a new sym-
bol is encountered for the first time in an assembly program, the assembler allocates
a new RAM address to it, starting at address 16. This convention can be exploited
to represent each static variable number j in a VM file £ as the assembly language
symbol £.j. For example, suppose that the file Xxxx.vm contains the command push
static 3. This command can be translated to the Hack assembly commands
@xxx.3 and D=V, followed by additional assembly code that pushes D’s value to the
stack. This implementation of the static segment is somewhat tricky, but it works.

Assembly Language Symbols We recap all the assembly language symbols used by
VM implementations that conform to the standard mapping.

Symbol Usage

SP, LCL, ARG, These predefined symbols point, respectively, to the

THIS, THAT stack top and to the base addresses of the virtual
segments local, argument, this, and that.

R13-R15 These predefined symbols can be used for any
purpose.

Xxx.j symbols Each static variable j in file xxx.vm is translated into

the assembly symbol Xxx. j. In the subsequent
assembly process, these symbolic variables will be
allocated RAM space by the Hack assembler.

Flow of control The implementation of the VM commands
symbols function, call, and label involves generating
special label symbols, to be discussed in chapter 8.

7.3.2 Design Suggestion for the VM Implementation

The VM translator should accept a single command line parameter, as follows:
prompt> VMtranslator source

Where source is either a file name of the form Xxx.vm (the extension is mandatory)
or a directory name containing one or more .vm files (in which case there is no ex-
tension). The result of the translation is always a single assembly language file named
Xxx.asm, created in the same directory as the input Xxx. The translated code must
conform to the standard VM mapping on the Hack platform.



144

Chapter 7

7.3.3 Program Structure

We propose implementing the VM translator using a main program and two mod-

ules: parser and code writer.

The Parser Module

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input
code. It reads VM commands, parses them, and provides convenient access to their
components. In addition, it removes all white space and comments.

Routine Arguments Returns Function
Constructor Input file/ — Opens the input file/stream
stream and gets ready to parse it.
hasMoreCommands — Boolean Are there more commands
in the input?
advance — — Reads the next command
from the input and makes it
the current command.
Should be called only if
hasMoreCommands () is
true. Initially there is no
current command.
commandType — C_ARITHMETIC, Returns the type of the
C_PUSH, C_POP, current VM command.
C_LABEL, C_ARITHMETIC is returned
c_Goro, ¢_IF, for all the arithmetic
C_FUNCTION, commands.
C_RETURN,
C_CALL
argl — string Returns the first argument

of the current command. In
the case of C_ARITHMETIC,
the command itself (add,
sub, etc.) is returned.
Should not be called if the
current command is
C_RETURN.
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Routine

Arguments

Returns

Function

arg2 —

int

Returns the second
argument of the current
command. Should be called
only if the current
command is C_PUSH,
C_POP, C_FUNCTION, Or
C_CALL.

The CodeWriter Module

CodeWriter: Translates VM commands into Hack assembly code.

Routine Arguments Returns  Function
Constructor Output file/stream — Opens the output file/
stream and gets ready to
write into it.
setFileName fileName (string) — Informs the code writer
that the translation of a
new VM file is started.
writeArithmetic command (string) — Writes the assembly code
that is the translation of
the given arithmetic
command.
WritePushPop command (C_PUSH — Writes the assembly code
or C_POP), that is the translation of
segment (string), the given command,
index (int) where command is either
C_PUSH or C_POP.
Close — — Closes the output file.

Comment: More routines will be added to this module in chapter 8.

Main Program The main program should construct a Parser to parse the VM
input file and a Codewriter to generate code into the corresponding output file. It
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should then march through the VM commands in the input file and generate assem-
bly code for each one of them.

If the program’s argument is a directory name rather than a file name, the main
program should process all the .vm files in this directory. In doing so, it should use a
separate Parser for handling each input file and a single CodeWriter for handling
the output.

7.4 Perspective

In this chapter we began the process of developing a compiler for a high-level lan-
guage. Following modern software engineering practices, we have chosen to base the
compiler on a two-tier compilation model. In the frontend tier, covered in chapters 10
and 11, the high-level code is translated into an intermediate code, running on a vir-
tual machine. In the backend tier, covered in this and in the next chapter, the inter-
mediate code is translated into the machine language of a target hardware platform
(see figures 7.1 and 7.9).

The idea of formulating the intermediate code as the explicit language of a virtual
machine goes back to the late 1970s, when it was used by several popular Pascal
compilers. These compilers generated an intermediate “p-code’ that could execute
on any computer that implemented it. Following the wide spread use of the World
Wide Web in the mid-1990s, cross-platform compatibility became a universally vex-
ing issue. In order to address the problem, the Sun Microsystems company sought to
develop a new programming language that could potentially run on any computer
and digital device connected to the Internet. The language that emerged from this
initiative—Java—is also founded on an intermediate code execution model called
the Java Virtual Machine, on JVM.

The JVM is a specification that describes an intermediate language called byte-
code—the target language of Java compilers. Files written in bytecode are then used
for dynamic code distribution of Java programs over the Internet, most notably as
applets embedded in web pages. Of course in order to execute these programs, the
client computers must be equipped with suitable JVM implementations. These pro-
grams, also called Java Run-time Environments (JREs), are widely available for nu-
merous processor/OS combinations, including game consoles and cell phones.

In the early 2000s, Microsoft entered the fray with its .NET infrastructure. The
centerpiece of .NET is a virtual machine model called Common Language Runtime
(CLR). According to the Microsoft vision, many programming languages (including
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C++, C#, Visual Basic, and J#—a Java variant) could be compiled into intermedi-
ate code running on the CLR. This enables code written in different languages to
interoperate and share the software libraries of a common run-time environment.

We note in closing that a crucial ingredient that must be added to the virtual
machine model before its full potential of interoperability is unleashed is a com-
mon software library. Indeed the Java virtual machine comes with the standard
Java libraries, and the Microsoft virtual machine comes with the Common Language
Runtime. These software libraries can be viewed as small operating systems, provid-
ing the languages that run on top of the VM with unified services like memory man-
agement, GUI utilities, string functions, math functions, and so on. One such library
will be described and built in chapter 12.

7.5 Project

This section describes how to build the VM translator presented in the chapter. In
the next chapter we will extend this basic translator with additional functionality,
leading to a full-scale VM implementation. Before you get started, two comments are
in order. First, section 7.2.6 is irrelevant to this project. Second, since the VM trans-
lator is designed to generate Hack assembly code, it is recommended to refresh your
memory about the Hack assembly language rules (section 4.2).

Objective  Build the first part of the VM translator (the second part is implemented
in Project 8), focusing on the implementation of the stack arithmetic and memory
access commands of the VM language.

Resources You will need two tools: the programming language in which you will
implement your VM translator, and the CPU emulator supplied with the book. This
emulator will allow you to execute the machine code generated by your VM transla-
tor—an indirect way to test the correctness of the latter. Another tool that may come
in handy in this project is the visual VM emulator supplied with the book. This pro-
gram allows experimenting with a working VM implementation before you set out to
build one yourself. For more information about this tool, refer to the VM emulator
tutorial.

Contract Write a VM-to-Hack translator, conforming to the VM Specification,
Part I (section 7.2) and to the Standard VM Mapping on the Hack Platform, Part I
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(section 7.3.1). Use it to translate the test VM programs supplied here, yielding cor-
responding programs written in the Hack assembly language. When executed on the
supplied CPU emulator, the assembly programs generated by your translator should
deliver the results mandated by the supplied test scripts and compare files.

Proposed Implementation Stages

We recommend building the translator in two stages. This will allow you to unit-test
your implementation incrementally, using the test programs supplied here.

Stage I: Stack Arithmetic Commands The first version of your VM translator
should implement the nine stack arithmetic and logical commands of the VM lan-
guage as well as the push constant x command (which, among other things, will
help in testing the nine former commands). Note that the latter is the generic push
command for the special case where the first argument is constant and the second
argument is some decimal constant.

Stage II: Memory Access Commands The next version of your translator should
include a full implementation of the VM language’s push and pop commands, han-
dling all eight memory segments. We suggest breaking this stage into the following
substages:

0. You have already handled the constant segment.

1. Next, handle the segments local, argument, this, and that.

2. Next, handle the pointer and temp segments, in particular allowing modifica-
tion of the bases of the this and that segments.

3. Finally, handle the static segment.
Test Programs

The five VM programs listed here are designed to unit-test the proposed implemen-
tation stages just described.

Stage I: Stack Arithmetic

® simpleAdd: Pushes and adds two constants.

® stackTest: Executes a sequence of arithmetic and logical operations on the
stack.
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